Revista Ciencia

Virófagos: Virus contra virus

Publicado el 21 mayo 2011 por Jal

Según el Comité Internacional de Taxonomía Vírica, un virus es un biosistema elemental que posee algunas de las propiedades de sistemas vivientes: genoma y capacidad de adaptación a cambios medioambientales. Sin embargo, un virus no puede capturar y almacenar energía libre y no es funcionalmente activo fuera de su célula hospedadora diana. Dicho de otro modo, un virus no tiene metabolismo y, por ello, no es un ser vivo, sino que, como parásito intracelular obligado, toma prestadas las características de los verdaderos seres vivos: desde las bacterias –incluso las que viven en condiciones extremas de temperatura, presión o salinidad- hasta nosotros mismos…

Virófagos

Virófagos. Virus come virus

Por lo tanto, parece lógico pensar que sólo las entidades biológicas con capacidad replicativa y metabolismo propio pueden ser depredadas por virus infecciosos, ¿o no? Pues a juzgar por estudios llevados a cabo en los últimos años en diferentes laboratorios, agentes víricos infecciosos complejos, grandes, muy grandes, recientemente analizados, podrían ser sorprendentes dianas de otros virus “comedores” de virus: los Virófagos. A continuación se describe el artículo recientemente publicado por el autor del presente Post en El Cultural:

Virus contra virus. Virófagos

 Giruses

Algunas de las especies de virus con ADN como genoma más grandes conocidos, como el de la viruela -prácticamente desaparecido a la espera de que la OMS decida qué hacer con las últimas muestras congeladas-, o el de la peste porcina africana, pueden acercarse a los 400 nm de tamaño y prescindir de muchos de los componentes y factores celulares implicados en replicación. Incluso pueden replicar en el citoplasma, lejos del núcleo donde necesitan acudir la mayoría de virus ADN. Sin embargo, hace dos décadas se descubrieron otras entidades víricas gigantes –Giant Viruses o Giruses- capaces de infectar amebas y otros organismos simples. Estas entidades, como las del género Mimivirus, poseen los genomas y cápsidas más grandes y complejos conocidos: hasta 1.2 Mb –más que muchas bacterias- y cerca de la micra –es decir, dentro del rango del microscopio óptico convencional-, respectivamente. Otros ejemplos de virus muy grandes a destacar serían el agente que infecta zooplancton, Virus Cafeteria roenbergensis (CRV), o ciertos destructores de algas de la familia Phycodnaviridae. Aunque no son entidades biológicas independientes, están “a un hervor” de la vida. En su conjunto, todos estos virus grandes se engloban dentro de los denominados Virus ADN Grandes Nucleocitoplásmicos (NCLDV, en inglés). Desde la Universidad del Mediterráneo, en Marsella, el equipo de científicos que participó en la caracterización de los primeros mimivirus anunció en el último congreso europeo –EuroVirology- el proyecto Tara-Girus, un barco-laboratorio que pretende recoger y analizar virus gigantes a lo largo del mundo. Estos giruses, como se verá a continuación, podrían poseer una característica compartida: sus propios parásitos “intravíricos” o virófagos mencionados anteriormente. Por ello, una pregunta que muchos científicos se plantean sería: ¿siguen siendo los NCLDV o giruses organismos no-vivos?

Virus comedores de virus 

Los virófagos son parásitos conocidos solamente desde hace un par de años. En 2008, el mismo grupo de investigadores que había caracterizado los mimivirus, descubrió el primero de estos virus comedores de virus, apodado Sputnik, en una torre de refrigeración de agua en París. Desde entonces, tal y como auguró Christelle Desnues, microbióloga del Centro Nacional de Investigación Científica de Marsella, nuevos virófagos han ido apareciendo, como el marino Mavirus, capaz de infectar al CRV, predador de especies integrantes del zooplancton ya mencionado. De hecho, en este último caso y según publican en Science científicos de la Universidad de Columbia Británica de Vancouver, Canadá, el genoma del mavirus sería similar al de algunos transposones eucarióticos. Los transposones son elementos genéticos que pueden “saltar” y moverse entre diferentes partes del ADN. Si su inserción se produce en un sitio sensible, pueden producir mutaciones incompatibles con la viabilidad celular o, como en el caso que nos ocupa, vírica. Quizá, ya puestos a especular, algunos transposones pudieran haber derivado de antiguos virófagos pasando a ser elementos utilizados por células superiores como protección frente a determinados giruses. Extrapolando estos resultados, además de permitir proteger a las especies de zooplancton, virus anti-virus podrían, en un futuro, ser utilizados en terapias en seres superiores -¿por qué no en humanos, tal y como se pensó con los bacteriófagos, virus infecciosos en bacterias, antes del desarrollo de los antibióticos?

El último de los virófagos descubierto acaba de ser descrito en las prestigiosas Proceedings of the National Academy of Sciences y Nature. El nuevo miembro de este grupo de parásitos se encontró por casualidad en el inhóspito Lago Orgánico del Éste Antártico mientras se estudiaban otras formas biológicas. De hecho, los autores del trabajo -Escuela de Ciencias Biotecnológicas y Biomoleculares de la Universidad de Nueva Gales del Sur, en Australia-, coordinados por Ricardo Cavicchioli, sugieren que estas formas orgánicas son más frecuentes de lo que se pensaba. El virófago se denomina OLV (Virófago del Lago Orgánico).

Lago Orgánico Antártico

Tal y como se comentó anteriormente, estos virus depredan virus gigantes como sería el caso de los ficodnavirus. Al atacar a estos giruses, OLV estaría protegiendo a sus víctimas, esto es, a diversas especies de algas. De hecho, el genoma de OLV se identificó dentro de la secuencia de su hospedador. Para Cavicchioli, por lo tanto, OLV podría estar colaborando con la supervivencia de algunas especies de algas antárticas –al menos durante los meses del deshielo-.

El hecho de que todos los virus que actúan como hospedadores de virófagos pertenezcan al grupo de los NCLDV, parece significativo de la complejidad estructural y funcional de estas últimas entidades. Finalmente señalar que, además de los extraordinarios lagos antárticos, genes que codifican proteínas virales –principalmente de la cápsida- han sido encontrados dentro de hospedadores de los más diversos ambientes, como un lago salino de las islas Galápagos, un estuario de Nueva Jersey, en EE.UU., u otro lago en Panamá, apoyando nuevamente la idea, según comenta Virginia Gewin en Nature, que la expansión de estos comedores de virus podría ser amplia.

El origen de los virus

Tal y como se ha mostrado, nuevas entidades infecciosas capaces de atacar los organismos más variados están emergiendo incluso de los entornos más inhóspitos, como, por ejemplo, los lagos antárticos. Y mientras todo esto ocurre, el origen y evolución de los primeros virus sigue siendo un misterio. Tres parecen ser las opciones más plausibles, no excluyentes entre sí: evolución retrógrada, por la cual, algún virus complejo podría haber sido originariamente una célula pequeña, simple –procariota probablemente- que tras parasitar otra de mayor complejidad fue especializándose y perdiendo autonomía. Otra opción apunta a un posible material celular que habría escapado al control de la división para perpetuarse de forma independiente. Por último, la tercera hipótesis –que no tiene por qué ser la menos probable- hablaría de una evolución independiente de los virus desde un mundo primitivo rico en ARN dentro de un océano prebiótico. Algunas de estas moléculas de ARN aprenderían a perpetuarse en el interior de las primeras células a medida que iban surgiendo.

¿Dónde encajarían los nuevos virófagos en toda esta vorágine infectivo-biológica? Pues no se sabe. Quizás sean el resultado lógico de una evolución reduccionista a varias bandas: células simples que pasarían a virus gigantes y parásitos suyos previos que co-evolucionarían a virófagos. Sea como fuere, el descubrimiento y posterior caracterización de nuevas formas infecciosas abre nuevas perspectivas en materia de evolución –tal y como ya ocurrió con los retrovirus, ribozimas y priones- y desdibujan aún más la delicada frontera entre la vida y lo simplemente orgánico.

JAL (CBMSO)

El Cultural

DIVULGACIÓN CIENTÍFICA A 23  DE MAYO DE 2011

  MADRI+D TV (Divulgación científica con cara, e imágenes, en 3 minutos)

ENTRE PROBETAS (Píldoras científicas en 2 minutos). Radio 5

A HOMBROS DE GIGANTES Radio 5

RADIO UTOPÍA

 FACEBOOK (José Antonio López-Guerrero)

FACEBOOK (Departamento de Cultura Científica -Centro de Biología Molecular)

TWITTER (JALGUERRERO)

TWITTER (DCCientificaCBM)

LINKED-IN (Jal Guerrero)

.


Volver a la Portada de Logo Paperblog