Almacenamiento de datos en imanes del tamaño de un átomo

Publicado el 24 agosto 2017 por Barzana @UMUbarzana

Hay un dicho que indica que los datos se expandirán hasta llenar toda la capacidad disponible. Tal vez hace diez o veinte años, era común almacenar programas de software, música MP3, películas y otros archivos, que podáin haber sido recopilados durante años. En los días en que las unidades de disco duro ofrecían unas pocas decenas de gigabytes de almacenamiento, la falta de espacio era casi inevitable.

Ahora que tenemos internet de banda ancha rápida y no pensamos en la descarga de un DVD de 4,7 gigabytes, podemos acumular datos aún más rápidamente. Las estimaciones de la cantidad total de datos almacenados en todo el mundo aumentarán de 4,4 billones de gigabytes en 2013 a 44 billones de gigabytes en 2020. Esto significa que estamos generando un promedio de 15 millones de gigabytes al día. A pesar de que las unidades de disco duro ahora se miden en miles de gigabytes en lugar de decenas, todavía tenemos un problema de almacenamiento.

La investigación y el desarrollo se centran en el desarrollo de nuevos medios de almacenamiento de datos que son más densos y por lo que puede almacenar una mayor cantidad de datos, y hacerlo de una manera más eficiente de la energía. A veces esto implica actualizar técnicas establecidas: recientemente IBM anunció una nueva tecnología de cinta magnética que puede almacenar 25 gigabytes por pulgada cuadrada (una pulgada equivale a 2,54 cm), un nuevo récord mundial para la tecnología de 60 años de edad. Mientras que los actuales discos duros magnéticos o de estado sólido son más densos alrededor de 200 gigabytes por pulgada cuadrada, las cintas magnéticas todavía se utilizan con frecuencia para la copia de seguridad de datos.

Sin embargo, la vanguardia de la investigación de almacenamiento de datos está trabajando a nivel de átomos y moléculas individuales, representando el límite máximo de la miniaturización tecnológica.

Búsqueda de los imanes atómicos

Las tecnologías actuales de almacenamiento de datos magnéticos -las utilizadas en los discos duros tradicionales con platos giratorios, estándar hasta hace unos años y que todavía son comunes hoy en día- se basan en métodos “top-down”. Esto implica hacer capas delgadas de una gran pieza de material ferromagnético, cada uno conteniendo muchos dominios magnéticos que se utilizan para contener datos. Cada uno de estos dominios magnéticos está hecho de una gran colección de átomos magnetizados, cuya polaridad magnética es establecida por la cabeza de lectura / escritura del disco duro para representar datos como binarios uno o cero.

Un método “ascendente” alternativo implicaría construir dispositivos de almacenamiento colocando átomos o moléculas individuales uno por uno, cada uno capaz de almacenar un solo bit de información. Los dominios magnéticos conservan su memoria magnética debido a la comunicación entre grupos de átomos magnetizados vecinos.

Los imanes de un solo átomo o de una sola molécula por otro lado no requieren esta comunicación con sus vecinos para retener su memoria magnética. En cambio, el efecto de memoria surge de la mecánica cuántica. Por lo tanto, debido a que los átomos o las moléculas son mucho, mucho más pequeños que los dominios magnéticos actualmente utilizados, y pueden usarse individualmente en lugar de en grupos, pueden ser empacados más estrechamente, lo que podría dar lugar a un enorme aumento en la densidad de datos.

Trabajar con átomos y moléculas como éste no es ciencia ficción. Los efectos de la memoria magnética en imanes de una sola molécula (SMMs) se demostró por primera vez en 1993, y efectos similares para los imanes de átomo único se mostraron en 2016.

Aumentar la temperatura

El problema principal que está en el camino de mover estas tecnologías fuera del laboratorio y en la corriente principal es que todavía no trabajan a temperaturas ambiente. Tanto los átomos individuales como los SMM requieren enfriamiento con helio líquido (a una temperatura de -269 ° C), un recurso costoso y limitado. Así, el esfuerzo de investigación durante los últimos 25 años se ha concentrado en elevar la temperatura a la que se puede observar la histéresis magnética, una demostración del efecto de la memoria magnética. Un objetivo importante es -196 ° C, porque esta es la temperatura que se puede lograr con el nitrógeno líquido, que es abundante y barato.

Tomó 18 años para el primer paso sustancial para elevar la temperatura en la que la memoria magnética es posible en SMMs – un aumento de 10 ° C logrado por los investigadores en California. Pero ahora el equipo de investigación en la Escuela de Química de la Universidad de Manchester ha logrado histéresis magnéticas en un SMM a -213 ° C usando una nueva molécula basada en el elemento de tierras raras disprosio, según se informa en una carta a la revista Nature. Con un salto de 56 ° C, esto está a sólo 17 ° C de la temperatura del nitrógeno líquido.

Usos futuros

Sin embargo, hay otros desafíos. Con el fin de almacenar prácticamente bits individuales de datos, las moléculas deben fijarse a las superficies. Esto se ha demostrado con SMMs en el pasado, pero no para esta última generación de SMMs de alta temperatura. Por otra parte, la memoria magnética en átomos individuales ya se ha demostrado en una superficie.

La prueba definitiva es la demostración de la escritura y la lectura no destructiva de datos en átomos o moléculas individuales. Esto ha sido logrado por primera vez en 2017 por un grupo de investigadores de IBM que demostró el dispositivo de almacenamiento de memoria magnética más pequeño del mundo, construido alrededor de un solo átomo.

Sin embargo, independientemente de si los dispositivos de almacenamiento de un solo átomo o de una sola molécula se vuelven verdaderamente prácticos, los avances en la ciencia fundamental que se están realizando a lo largo de este camino son fenomenales. Las técnicas de química sintética desarrolladas por los grupos que trabajan en SMM ahora nos permiten diseñar moléculas con propiedades magnéticas personalizadas, que tendrán aplicaciones en la computación cuántica e incluso la resonancia magnética.

Ampliar en:  The Conversation