Ceres y los matemáticos

Publicado el 26 octubre 2019 por Icmat

Ceres fue el primer asteroide descubierto, cuando los astrónomos perseguían con sus observaciones descubrir un planeta desconocido entre las órbitas de Marte y Júpiter, planeta que debería existir de acuerdo con la llamada ley de Titius-Bode. Finalmente, el 1 de enero de 1801, y desde Palermo (Sicilia),  Giuseppe Piazzi observó lo que entonces calificó de un cometa. Pero, ¿por qué Ceres es tan relevante para los matemáticos?

Ceres, fotografía de 2015 por Justin Cowart

Piazzi lo bautizó como Ceres Ferdinandea, por la diosa romana de la agricultura, patrona de su tierra natal, Sicilia, y con el apellido Ferdinandea para honrar a su protector, el rey Fernando IV de Nápoles y Sicilia. Posteriormente, se eliminó este apellido por razones puramente políticas y Ceres se quedó solo con su nombre.

Giuseppe Piazzi

El problema de Piazzi era que con sus conocimeintos matemáticos solo podía trazar la órbita de Ceres por poco más de un mes (40 días). Al pasar ese tiempo, desapareció por el resplandor del Sol. Debía reaparecer después, pero Piazzi era incapaz de averigüar donde. Y aquí intervino el genio de uno de los mejores matemáticos de todos los tiempos, Carl Friedrich Gauss. Gauss oyó hablar de este problema y decidió resolverlo. Y en solo tres meses, comunicó a los atrónomos donde teníanq ue buscar, y allí fué redescubierto por Franz Xaver von Zach, en Gotah, y un día después por Heinrich Olbers en Bremen.

Carl Friedrich Gauss

Gauss, entonces un joven de 24 años, usó las leyes de Kepler para obtener una ecuación de grado ocho, de la cuál conocía una solución, la órbita de la Tierra. Y a continuación desarrolló un nuevo método de cálculo, lo que hoy llamamos método de los mínimos cuadrados. Imaginemos que tenemos una serie de datos, un conjunto de pares ordenados: el objetivo es encontrar la función continua que mejor se ajuste a los datos dados. Grosso modo, esa función minimiza la suma de los cuadrados de las diferencias en las ordenadas entre los puntos generados por la función elegida y los correspondientes valores en los datos (veáse la figura).

Este método de mínimos cuadrados no se publicó sino hasta 1809, en el segundo volumen de su trabajo sobre mecánica celeste, Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium. Adrien-Marie Legendre desarrolló el mismo método de forma independiente en 1805, pero el mérito hay que dárselo a Gauss.

Digamos que entre las predicciones que hicieron muchos científicos para predecir la órbita de Ceres la de Gauss difería notablemente, pero resultó acertada con una precisión asombrosa.

El método de mínimos cuadrados es un excelente ejemplo de cómo las matemáticas puras se pueden aplicar para resolver problemas prácticos, y en este caso, el impacto fue enorme y se sigue aplicando hoy en día, habiéndose convertido en un paradigma de las matemáticas. Es por ello que la Sociedad Matemática Alemana (Deutsche Mathematiker-Vereinigung) dedicó los beneficios del Congreso Internacional de Matemáticos (ICM) de 1998 en Berlín para poner en marcha el Premio Carl Friedrich Gauss, en colaboración con la Unión Matemática Internacional (IMU).

El Premio consta de una medalla y una cantidad en metálico, y se concediço por primera vez en el ICM de Madrid en 2006. En esa ocasión, recayó en el matemático japonés Kiyoshi Îto. El Premio Gauss se concede a aquellos matemáticos que han logrado, como en el caso de Gauss, avances que han supuesto un impacto significativo en nuestras vidas cotidianas.

El anverso de la medalla es una efigie de Gauss (de hecho, incompleta, ero nuestros ojos son capaces de reconstruir la imagen), y un reverso con un cuadrado y un círculo unidos en una órbita, recordando así la gesta de Gauss.

 

Desde 2006, Ceres ha sido elevado por la Unión Astronómica Internacional (IAU) a la categoría de planeta enano, compartiendo ese honor con Plutón. Pero, como hemos visto, Ceres ocupa un lugar privilegiado para los matemáticos.

___

Manuel de León (CSIC, Fundador del ICMAT, Real Academia de Ciencias, Real Academia Canaria de Ciencias).