Ayer estuve en una charla de Pepe Ferreirós, especialista en historia y filosofía de la matemática, sobre la noción de "conjunto arbitrario", y fue de lo más interesante..Un conjunto es no-arbitrario cuando puede definirse mediante una fórmula o predicado, es decir, mediante un enunciado con una variable no ligada por ningún cuantificador ("el conjunto de todos los x tales que Fx", donde "Fx" es, p.ej., "x es un número primo"). Un conjunto arbitrario es, por lo tanto, un conjunto que NO puede ser definido mediante ninguna fórmula. Fijémonos, para mayor claridad, en los conjuntos formados por números naturales (es decir, si N es el conjunto de todos los números naturales, hablamos de los subconjuntos de N)..¿Qué subconjuntos de N son arbitrarios? La respuesta es que casi todos:.Como sabéis, llamando "A0" ("aleph-sub-cero", pero no voy a ponerme a buscar el símbolo "aleph") a la "cantidad" de números naturales (la "cardinalidad" de N), hay 2^A0 (dos elevado a A0) subconjuntos de N, cantidad que, curiosamente, es igual a la "cantidad" de números reales, o la cardinalidad del conjunto R (bueno, no tan curioso, como veremos en un momento), y 2^A0 es necesariamente mayor que A0. Un problema abierto de la teoría de conjuntos es si hay algún conjunto que sea mayor que N pero menor que R; que NO lo hay, es decir, que TODOS los subconjuntos de R tienen, o bien el mismo tamaño que N (son "infinitamente contables"), o bien el mismo tamaño que R (es decir, que 2^A0= A1) es la famosa "hipótesis del continuo"..Pero, por otro lado, hay SÓLO "infinitamente contables" fórmulas construibles con un lenguaje finito, y por lo tanto, la cantidad de conjuntos no-arbitrarios (o sea, los definibles mediante esas fórmulas) es A0..Así pues, si N tiene 2^A0 subconjuntos, pero SÓLO A0 de esos conjuntos son definibles, resulta que hay 2^A0 - A0 (igual, naturalmente, a 2^A0) subconjuntos arbitrarios de números naturales..¿Cómo "identificar", o al menos, cómo "concebir" o "referirnos a" un subconjunto arbitrario de números naturales? Ferreirós mostró en su charla un procedimiento muy intuitivo. Imaginemos que representamos (como se hace normalmente) cada número real mediante un número decimal infinitamente largo; para simplificar, podemos pensar en los números reales comprendidos entre 0 y 1, todos los cuales tienen la forma 0,abcdefg..., donde cada letra es un dígito. Para simplificar más aún, supongamos que estamos escribiendo los números en notación binaria, de modo que los dígitos sólo pueden ser ceros o unos. Tenemos, por tanto, todos los números reales comprendidos entre 0,00000.... (que es 0) y 0,1111111...... (que es igual a 1). Los dígitos de la expansión decimal de uno de estos números (lo que va después de la coma) están ORDENADOS, es decir, podemos hablar del PRIMER decimal, el SEGUNDO decimal, el decimal TRICENTÉSIMO OCTOGÉSIMO CUARTO, etc., etc., etc..Pues bien, sea r un número cualquiera de esos (0,01001010001...), y consideremos un conjunto C definido de la manera siguiente a partir de r: .C(r) es el conjunto de todos los números naturales n tales que n pertenece a C(r) si y sólo si el n-simo decimal de r es un 1..(En el ejemplo, C(r) contendrá el 2, el 5, el 7, el 11, y los números correspondientes a los demás LUGARES de la expresión decimal de r en los que halla un 1 en vez de un 0)..Es fácil darse cuenta de que, puesto que entre 0 y 1 están TODAS las expresiones decimales POSIBLES (pues luego se repiten las mismas entre 1 y 2, entre 2 y 3, etc.), este procedimiento nos permite definir TODOS los subconjuntos de N..
.Enrólate en el Otto Neurath