Data Science y ONGs. Un matrimonio muy conveniente

Publicado el 17 marzo 2021 por Artyco

No se puede negar que la ciencia de datos o Data Science, es una de las principales tendencias del momento. Desde la investigación de inteligencia artificial, el diagnóstico de enfermedades y los vehículos autónomos, hasta la detección de fraudes, el marketing digital, la gestión de recursos humanos y mucho más. Un sector que puede aprovecharse tremendamente de ello, no es otro que el conocido como el tercer sector o el de las ONGs y asociaciones solidarias. En este post, te voy a contar qué es el Data Science y cómo puede beneficiar este al tercer sector. Además, te pongo el caso de uno de nuestros clientes: Plan Internacional. Vamos allá.

Como lees, Data Science y ONGs, pueden llegar a ser un matrimonio muy conveniente. Y es que, la ciencia de datos es una disciplina que poco a poco está siendo cada vez más utilizada en el entorno empresarial, debido a la rentabilidad y muchos beneficios que aporta.

Las formas son variadas. Desde contratar a un científico de datos que te resuelva esa necesidad, hasta contratar a una empresa especializada para que el equipo de científicos de datos y Data Analysts trabajen a medida y en función de tus necesidades.

Las grandes y medianas compañías ya están haciendo uso de uno u otro sistema, y ahora les toca a otras más retrasadas desde el punto de vista de la cultura del dato, y entidades y asociaciones del tercer sector, quienes pueden obtener unos importantes beneficios de su normalización en el proceso de trabajo y planificación estratégica.

Como todos ya sabemos, las nuevas tecnologías están dando lugar a un aumento exponencial del volumen y los tipos de datos disponibles, creando posibilidades sin precedentes para informar y transformar la sociedad, y proteger el medio ambiente.

Gobiernos, entidades, investigadores y grupos de ciudadanos están en un momento de experimentación, innovación y adaptación al nuevo mundo de los datos. Un mundo en el que estos son más grandes, más rápidos y detallados que nunca. Esto es el Big Data. La revolución de los datos.

Algunos ya están viviendo en este nuevo mundo. En contra, hay entidades y gobiernos que se están quedando excluidos por falta de recursos, conocimientos, capacidad u oportunidad. Además, existen enormes y crecientes desigualdades en el acceso a los datos y la información, y en la capacidad de utilizarlos.

En este post, veremos brevemente cómo definimos la ciencia de datos y cómo puede ser utilizada por entidades benéficas y del tercer sector.

¿Qué es la ciencia de datos o Data Science?

Cada vez utilizamos más tecnología conectada, la cual produce más y más datos sobre lo que hacemos. El IoT o Internet de las cosas, está multiplicando esa data en cantidad y en velocidad.

Esos datos, sin embargo, están allí esperando a que los recojamos, los tratemos y saquemos de ellos conclusiones que sirvan para obtener un mayor conocimiento. Parte de ese conocimiento podría ser lo que cambie el mundo, o simplemente ser el primer paso para solucionar ese pequeño problema.

En este proceso, es donde interviene el científico de datos de una manera protagonista. Básicamente, la ciencia de datos consiste en utilizar técnicas estadísticas y computacionales para convertir los datos disponibles de una cantidad de fuentes, en hallazgos y conclusiones que generen información, faciliten la toma de decisiones informadas, revelen patrones y tendencias, y nos permitan hacer predicciones.

Como ya sabemos, en una Organización No Gubernamental (ONG) el sistema de valor está conformado por los grupos de apoyo como individuos, empresas, entidades del Gobierno, agencias internacionales y organismos multilaterales. Además de por los miembros de la organización, como fundadores, socios, directivos, voluntarios y personal remunerado. Así como por la población en condiciones de vulnerabilidad como familias, hombres, mujeres, adolescentes, niños, minorías o ancianos.

Pero no sólo existe una relación directa entre los grupos de apoyo y la organización social y entre esta y los beneficiarios, sino también una relación indirecta entre los grupos de apoyo y los beneficiarios.

Con esta variedad interrelacional y tantos players involucrados, imagina el campo abierto que tiene una organización no gubernamental o solidaria, de encontrar conocimiento a través de la ciencia de datos.

¿Cómo puede la ciencia de datos beneficiar a las organizaciones filantrópicas y del tercer sector?

Quizás puedas pensar que la utilidad del Data Science en ciertos campos es más evidente que en el tuyo, sin embargo, no es así.

Por ejemplo, los bancos pueden crear analíticas para buscar características en las solicitudes de crédito que estén asociadas con incumplimientos de préstamos.

Las plataformas de video como Netflix o HBO pueden recomendar películas en función de su historial de visualización.

Las empresas de telefonía móvil, sin embargo, pueden crear modelos para predecir si un cliente no renovará su contrato y orientarlos con las ofertas adecuadas.

Puede que no sea inmediatamente obvio ver cómo se puede utilizar la ciencia de datos en entidades centradas en actividades benéficas, pero el Data Science puede ser tan eficaz y útil en estos sectores como en empresas de primera línea o nuevas empresas tecnológicas.

Y es que esta disciplina puede ayudar comenzando con la efectividad y la eficiencia básicas. Por ejemplo, puede ofrecer conocimiento sobre cualquier aspecto de la gestión organizacional, desde la contratación y retención de empleados hasta el marketing, las propiedades y las operaciones.

En un ejemplo reciente de aplicación del aprendizaje automático a la gestión de instalaciones, Google usó sus algoritmos para reducir la cantidad de energía que usa para enfriar sus centros de datos. ¡Reduciéndola hasta en un 40%!

A medida que los enfoques de aprendizaje automático comienzan a aplicarse en más actividades de una organización, los ahorros potenciales a través de una mayor eficiencia podrían marcar una diferencia significativa en los costos, disminuyendo el porcentaje de cada donación que se destina a los gastos generales de la organización, por poner un ejemplo. Uno de los aspectos más críticos en este sentido, es la inversión que se hace en marketing.

Aunque los costos operativos reducidos pueden maximizar la cantidad de cada donación que se pone a trabajar, siempre existirá el deseo de garantizar que las donaciones se pongan a trabajar donde generarán el mayor impacto y de garantizar que la eficacia de esa donación sea supervisada.

La ciencia de datos también puede ayudar aquí, con modelos basados en IA puestos a trabajar buscando características en proyectos potenciales que estén asociados con un desempeño sólido y resultados exitosos, y algoritmos que pueden evaluar el desempeño de proyectos en tiempo real, a partir de las redes sociales. Como, por ejemplo, en la opinión mediante el análisis de sentimientos, el análisis estadístico para buscar un aumento en el crecimiento económico en un sector en particular, o el uso de técnicas de ciencia de datos para combinar y complementar datos de diferentes fuentes para impulsar iniciativas de atención médica, como el control de la malaria en Namibia.

Otras aplicaciones de los datos bien utilizados en el ámbito social, podrían ser:

  • Crear un modelo predictivo que ayude a determinar la probabilidad de un problema relacionado con el abuso de drogas, el maltrato o el abuso sexual, sólo a través de los mensajes vertidos en el chat de ayuda de la ONG en cuestión o en el perfil de la red social de esta.
  • Determinar la probabilidad de abandono escolar,a través de la analítica predictiva. Este conocimiento permitiría a las autoridades educativas, actuar con antelación para evitar dicho abandono prematuro.
  • Predicción de agua a través de la colocación de sensores en pozos, ríos... a través de los cuales obtener una medición y generar modelos predictivos que ayuden a anticiparse ante una crecida o una sequía.
  • Diagnóstico de la desnutrición, a través de la simple fotografía de la muñeca de cualquier niño. Gracias a la información antropomorfa del sujeto, y todos los datos históricos almacenados de miles de niños, se puede determinar un diagnóstico muy acertado.
  • El dato puede mejorar la atención a las personas que están en zona de catástrofe natural, localizar el foco de un terremoto en tiempo real, rastreando los movimientos con el móvil de la población, o seguir la propagación de la gripe, a través del comportamiento de los usuarios en Twitter o Facebook.
Es el poder del dato y de la tecnología. Tecnología que una vez más, se pone al servicio de las personas.

Quizás estés aún en un momento poco avanzado, pero tranquilo, no es necesario comenzar la carrera yendo a 200 km/h, quizás antes haya que ir a 100 mk/h. Si es tu caso, aquí te cuento algo muy simple que puedes poner en marcha en tu ONG, que seguramente no estés haciendo, y lo cual te va a beneficiar enormemente.

Todo empieza con una segmentación y una creación de arquetipos de tus socios y donantes. Caso Plan Internacional.

Cualquier organización sin ánimo de lucro dispone de una interesante base de datos compuesta por socios, donantes y potenciales.

El objetivo de cualquier empresa privada es segmentar su base de datos con el fin de crear una serie de arquetipos que permitan realizar campañas más personalizadas y eficaces. En este caso, una ONG no deja de tener ese mismo objetivo, ¿verdad?

Esta problemática nos la planteó la ONG Plan internacional en su día. Lo que nosotros hicimos fue, a través de sus datos de origen en un entorno CRM puramente transaccionales, transformar ese entorno operacional (los datos del CRM), en analíticos, montándolos en Azure.

Una vez hicimos esto, consolidamos los datos existentes, es decir, ajustamos toda la información que allí había a unos estándares comunes. A continuación, enriquecimos la información de cada individuo con diversos datos de fuentes OpenData.

Una vez dejamos la base de datos preparada para el trabajo analítico, creamos los diferentes segmentos, teniendo en cuenta la actividad de Plan Internacional y su modo de trabajo, y el ciclo de vida de sus socios y donantes.

Una vez obtuvimos los correspondientes segmentos, creamos los arquetipos en base a si son socios y donantes de un tipo u otro, añadiéndole posteriormente los datos sociodemográficos.

Todo este trabajo se completa con la entrega de unos dashboards o cuadros de mando de autoconsumo, a través de los cuales Plan Internacional podrían generar ellos mismos, los diferentes buyer personas, simplemente usando filtros, en base a las agrupaciones de segmentos y arquetipos.

Esta facilidad a la hora de agrupar a sus socios y donantes les permitió crear comunicaciones mucho más precisas, así como encontrar perfiles muy valiosos que no habían identificado antes.

Como ves, introducir algo tan simple como esto que te acabo de contar, puede suponer una optimización tremenda en las acciones de marketing de la ONG, y el comienzo para aumentar la inteligencia y la ciencia de datos en todos los procesos de la organización. De este modo, Data Science y ONGs pueden unirse.

¿Necesitas ayuda? ¿Quieres empezar con algo como esto que te acabo de contar? En artyco estaremos encantados de poder ayudarte.