El hombre anumérico

Por Borradelblog

Estos días ha visitado España John Allen Paulos, matemático y divulgador norteamericano cuya obra más conocida es la que da título a esta entrada. Si queréis, os dejo el enlace a la entrevista que Antonio Martínez Ron le hizo durante su visita, o la entrevista que le hizo Pampa García Molina. Las dos son muy recomendables.

En el citado libro, “El hombre anumérico” (y prácticamente en todos sus escritos) Paulos sostiene que lo que él llama “anumerismo” es una manifestación más de cierto analfabetismo (analfabetismo matemático) y que tiene importantes consecuencias (negativas) para nuestra sociedad. Es más, mucha gente se enorgullece de no saber matemáticas (“es que soy de letras”) para justificar que no sabe realizar las operaciones más elementales, ni extraer conclusiones válidas a partir de datos sencillos. En fin…

Naturalmente en su libro Paulos pone muchos ejemplos, pero supongo que todos nos hemos encontrado alguna vez con muchos ejemplos de anumerismo, desde el

“reparte tú la cuenta entre los dos, que eres matemático”,

(a lo que siempre me entran ganas de replicar:

“¿Por qué no me leíste tú el menú que eres de letras?”),

hasta la abuela que para que el niño no salga a la calle y sea secuestrado, lo atiborra de golosinas mientras le pone el televisor (cuando es muchísimo más probable que el niño muera de sobrepeso o atragantado con un caramelo que de resultas de un secuestro por un desconocido).

A raíz de lo anterior: el no saber usar probabilidades o usarlas incorrectamente realizando una interpretación errónea de ellas es uno de los ejemplos más típicos de anumerismo. El mismo Paulos comenta en la introducción de su libro:

“El anumerismo, o incapacidad de manejar cómodamente los conceptos fundamentales de número y azar, atormenta a demasiados ciudadanos que, por lo demás, pueden ser perfectamente instruidos. Las mismas personas que se encogen de miedo cuando se confunden términos tales como «implicar» e «inferir», reaccionan sin el menor asomo de turbación ante el más egregio de los solecismos numéricos. Me viene a la memoria un caso que viví en cierta ocasión, en una reunión, donde alguien estaba soltando una perorata monótona sobre la diferencia entre constantemente y continuamente. Más tarde, durante la misma velada, estábamos viendo las noticias en TV, y el hombre del tiempo dijo que la probabilidad de que lloviera el sábado era del 50% y también era del 50% la de que lloviera el domingo, de donde concluyó que la probabilidad de que lloviera durante el fin de semana era del 100%.”

Está claro que en este ejemplo la probabilidad de que llueva el fin de semana no era del 100% sino de … ¿Sabe calcularla el lector?

No es difícil si se piensa al revés: ¿Cuál es la probabilidad de que no llueva en todo el fin de semana? La probabilidad de que no llueva el sábado es del 50% (o 1/2) y la probabilidad de que no llueva el domingo es también del 50%, así que la probabilidad de que no llueva ninguno de los dos días es de (1/2)(1/2)=1/4, por lo tanta la probabilidad de que lloviera el fin de semana es del 75%.

El propio Paulos tiene otro libro titulado “Un matemático lee el periódico” en el que se destacan algunos ejemplos de anumerismo en un entorno especialmente sensible como son los medios de comunicación (muchos ejemplos de ello pone también José A. Pérez en su blog). Animada por ello decidí buscar algunos datos que corroboraran que el anumerismo también asola la prensa nacional y se me ocurrió mirar noticias sobre Carlos Fabra y la lotería ya que ese tipo de noticias implica cierto uso de las probabilidades: no debería haberlo hecho, porque el resultado de mis pesquisas es aún peor de lo que podía sospechar a priori. Ay, omá…

En diversos medios se comenta las veces que la he tocado la lotería a ese afortunado miembro del Partido Popular y aunque hay divergencia entre las distintas fuentes, parece ser que entre el año 2000 y el 2004 le tocó cuatro veces algún premio de la lotería de Navidad y siete veces en total por la de Navidad o el Niño entre 2000 y 2011. Parece mucha suerte, pero ¿es eso significativo? Para determinar si es significativo o no, debemos saber cuál es la probabilidad de que ocurra y aquí nos encontramos con las primeras sorpresas desagradables: en el diario Levante encontramos esta “perla”: “Según los expertos, la probabilidad de ganar el Gordo del Sorteo de la Lotería de Navidad es de una entre 16,5 millones.” ¡Digo!, ¿quién dijo miseria?

Examinemos dicha afirmación:

Lo primero es que en la misma noticia no se afirma que al señor Fabra le tocara el gordo de la Navidad, sino alguno de los premios; lo segundo, muy llamativo y ya dentro de nuestra temática es que tengan que consultar a “expertos” para determinar dicha probabilidad, y lo tercero es lo alejado que está dicha probabilidad de la real. No hace falta ser ningún “experto” para determinar que si hay 85.000 números (en la actualidad hay 100.000 números) y solo uno es el gordo, la probabilidad no es una entre 16,5 millones, sino una entre 85.000, una probabilidad que es casi 200 veces mayor que la señalada en el artículo.

Aún más, como en él se señala que en realidad lo que le ha tocado es algún premio, la probabilidad de ello es mucho más alta: en los últimos sorteos hay aproximadamente 5.000 números premiados (excluyendo reintegro que no aumenta el capital invertido) de un total de 100.000, así que las probabilidades de que te toquen si juegas solo un número son de una entre 20, (una probabilidad baja, pero casi 800.000 veces mayor que la señalada en el periódico). A esto se le añade el hecho de que si, como ha declarado Fabra, se juega varios números, la probabilidad evidentemente aumenta. Si compramos 10 números distintos, la probabilidad de que no te toque es de (19/20) ¹⁰ aproximadamente un 60% y por tanto la probabilidad de que te toque es del 40%, esto es una entre 2,5 y no de una entre 16.500.000 como afirmaban los “expertos” en el artículo

Calcular la probabilidad de que te toque al menos cuatro de cinco años o siete de once no es tan sencillo como el caso de un solo año. Primero veamos el caso de que te toque cuatro años seguidos que es más sencillo: simplemente necesitamos multiplicar la probabilidad de que te toque un año (asumamos que tenemos 10 números, que hay 100.000 bolas distintas y que se premian 5.000) esto es: 0,4 por si mismo cuatro veces (0,4)⁴=0,03, esto es: un 3% de posibilidades de que toque; igual para que te toque siete años: (0,4)⁷=0,002: ésta ya mucho más remota del 0,2%.

El que te toque al menos siete años de once ya son unas cuentas un poco más complicadas, pero vienen a ser las mismas que las del tiempo del fin de semana que comenta Paulos en su libro y que hemos citado anteriormente ¿Se atreve el lector a calcular dicha probabilidad? Espero esos cálculos en los comentarios (cómo me está gustando mandar tareas últimamente).

¿Exime lo dicho anteriormente al señor Fabra de toda duda? Ni mucho menos, existe una posibilidad muy remota de que todo sea producto de la suerte, pero existe otra explicación mucho más lógica y con más probabilidades de haber ocurrido realmente. Pero yo no soy de malmeter…

http://blogs.20minutos.es/mati-una-profesora-muy-particular/2013/03/18/el-hombre-anumerico/