No vamos a andarnos con rodeos. Hoy os voy a demostrar que π=2. Así, tal y como suena, contradiciendo a la Biblia, a Euler y a toda la Matemática clásica y moderna. Vamos allá.
Vamos a partir de un segmento de longitud 2. Vamos a suponer que el segmento es el intervalo que va del punto
En el estado inicial, vamos a construir la semicircunferencia de centro el origen y de radio 1. La longitud de esta curva es, pues,
En la primera iteración, vamos a construir 2 semicircunferencias. Divido el intervalo inicial en 2 subintervalos iguales. En el intervalo
En la segunda iteración, cada uno de los intervalos anteriores, los vuelvo a dividir en 2, es decir, me quedo con los intervalos
En la enésima iteración, tendremos
En el límite, este proceso desemboca en el propio segmentoinicial
Imponente, ¿verdad? Pues buscad algún error, que en este caso... no lo hay. Entonces... ¿qué es lo que falla? ¿Acaso nos han engañado y el verdadero valor de
No, ni mucho menos. Vamos a dar 2 (posibles) explicaciones a esta paradoja. La primera de ellas es la que da nombre al artículo, es fácil de entender aunque quizás no sea muy rigurosa; mientras que la segunda explicación es bastante más precisa y técnica pero difícil de entender.
Una posible forma de explicarlo es recurrir a los fractales. El problema es que en matemáticas las cosas no siempre son como parecen y, aunque parece que este proceso acaba desembocando el el propio segmento, la realidad es que el conjunto límite es esencialemente distinto. Se trataría de lo que yo mismo he llamado segmento de puntos gordos. Sería un conjunto de tipo fractal en la que la línea límite recorre el segmento
ATENCIÓN, VA A COMENZAR UNA EXPLICACIÓN MUY TÉCNICA EN MATEMÁTICAS.
La segunda explicación, mucho más técnica y matemática, tiene que ver con la convergencia uniforme de sucesiones de funciones. Si llamamos
FIN DE LA EXPLICACIÓN TÉCNICA EN MATEMÁTICAS.
En resumen, que de una forma o de otras, en matemáticas, las cosas no son siempre como parecen ni parecen lo que en realidad son.
Tito Eliatron Dixit
PD: La falacia/paradoja original, sin solucionar, la encontré en el blog Disgresiones 3.0 gracias a un mensaje privado de @vientoblanko. Yo he modificado un poco la construcción original... más que nada para hacerla un poco más visual y bonita.