Desde que el matemático griego Arquímedes construyó un algoritmo para incrementar la precisión del valor de π, tratar de calcular más decimales de la constante se ha convertido en un ejercicio divertido para quienes trabajan con los números, revolucionado por el desarrollo de las series infinitas en el siglo 15, y la creación del cálculo infinitesimal durante el siglo 16. Tanto el genial Isaac Newton como su contemporáneo alemán, Gottfried Leibniz, dedicaron buena parte de su tiempo a la aproximación de π, sumando continuamente cadenas de valores para ir mejorando el resultado. Con respecto a esta distracción momentánea, Newton confesaría luego en una carta a un colega, “me avergüenza decirte por cuántas cifras hice estos cálculos, no teniendo nada mejor que hacer en el momento”.
Las máquinas, por supuesto, no han tenido dificultades en superarnos, con la súper-computadora PiHex produciendo más de mil billones de dígitos binarios de π en el transcurso de un mes –un número similar a la cantidad de hormigas que hay en La Tierra. En el cálculo usual de base 10, el récord lo tiene el equipo de Shigeru Kondo, que computó 12 millones de millones de valores en diciembre del 2013.
Newton definió prodigiosamente el cálculo de la gravedad entre dos cuerpos, pero nunca pudo comprender cuál era el mecanismo que permitía esta “acción a distancia” entre objetos lejanos. La ausencia de un medio de transmisión era algo que le molestaba profundamente, diciendo incluso que se trataba de “un absurdo que no podía aceptar ningún hombre que tuviese facultad en asuntos filosóficos”. Como Albert nos revelaría siglos después, ese medio no es más que el espacio mismo, que se “dobla” ante la presencia de energía y desvía la trayectoria de los objetos. En la fórmula original de Newton solo se consideraban las masas y la distancia para generar el resultado, pero la propagación en el espacio tridimensional de Einstein requería definir “esferas” alrededor de la fuente de gravedad (es decir, áreas separadas por la misma distancia del punto central), y luego sumar todas esas superficies para establecer la geometría del espaciotiempo. Justo aquí entra nuestro protagonista en escena nuevamente pues, como bien sabemos, el área de una esfera es 4π x radio², lo que enlaza necesariamente esta constante al cálculo relativístico. Con simpleza y elegancia, Einstein utilizó a π para cambiar al mundo, una tarde de 1915.
La celebración de un valor tan importante es indudablemente positiva, pero lo más interesante del día de π no son los dígitos que podemos memorizar, sino todo lo contrario: la mejor parte de π es lo que no podemos cuantificar. 3,14 pueden ser los números más significativos de la serie, pero lo cierto es que π es un número irracional infinito, completamente azaroso, que contiene cualquier secuencia numérica que puedas imaginar dentro de sí. Con todo el uso que le damos es fácil pensar que lo tenemos dominado, pero ¿qué cerebro puede realmente dominar la infinitud? En este sentido, el número π no es demasiado distinto del universo mismo: incomprensible pero debatible; en expansión constante pero finito en apariencia; lleno de patrones arbitrarios condenados a repetirse; hermoso precisamente porque su totalidad no cabe en la mente humana.
Aunque nuestras vidas tengan inevitablemente un final, qué bueno es que podamos dedicar un día a celebrar la eternidad y sus misterios.
Esta publicación apareció originalmente en el blog Sobre Hombros de Gigantes.