Al ver dicho cladograma, uno tiene la impresión de que el cuerpo "tiburonoso" es decir, la morfología de tiburón surgió de forma tardía en el grupo, hasta los Galeomorphii y que, la morfología de quimera al ser basal, debería ser similar a la que presentaba el ancestro común de quimeras y elasmobranquios. Y digo, es casi siempre el caso para muchos grupos. Veamos por ejemplo a los dinosaurios. Uno ve a bichos basales como Herrerasaurus, Eoraptor o Eodromaeus y piensa "¡Ajá!, seguro los proto-dinosaurios lucían algo similar" y nadie mira el gran árbol de los dinosaurios, ve un gorrión (uno de los dinosaurios más derivados) y piensa "¡Ajá!, seguro los primeros dinosaurios lucían como gorriones". Y cuando uno mira a los proto-dinosaurios, la sospecha se corrobora en gran medida, bichos como los Lagerpeton, Marasuchus y los Silesauridae se parecen a los dinosaurios mencionados previamente. Es pues, la regla mirar a los basales de un grupo y conferirles la anatomía base ancestral. Pero ¿es el caso para estos bichos marinos?
Un nuevo estudio (1) analiza de nuevo a diferentes grupos de condrictios (vivos y extintos) y prestando especial atención al neurocráneo (la "caja" donde se resguarda el encéfalo), trazan una filogenia que ya se había perfilado poco a poco en diferentes estudios, pero que nos sorprende con varias cosas interesantes. De buenas a primeras, notamos que las quimeras no son, como pensábamos y se recita como corolario: primitivas. De hecho, la morfología de quimera es muy, pero muy avanzada. La morfología basal de los condrictios es la de tiburón. El grupo hermano de las quimeras (Cladoselachimorpha) incluye "tiburones" bien conocidos como los stetacántidos con "tablas de planchar" en la cabeza o al tan confundido Cladoselache, que se toma por ancestral a todos los condrictios, pero que hoy vemos que no es el caso, se trata de un tiburón derivado. También otros grupos son desterrados del prejuicio de lo primitivo y se incorporan como parte del linaje de los tiburones y rayas, se trata de los xenacantiformes y los tenacantiformes.
Si vemos la base del cladograma anterior, notaremos que la morfología de tiburón está presente en los condrictios basales (que no son de ningún linaje moderno en especial), como Doliodus. Y es precisamente esta forma arquetípica la que es basal. Así que ahora que veas a una quimera, verás que su morfología no es primitiva, sino todo lo contrario, ya que éstas descienden de condrictios con forma de tiburón.
Fuentes:
- Coates, M. I., Gess, R. W., Finarelli, J. A., Criswell, K. E., & Tietjen, K. (2017). A symmoriiform chondrichthyan braincase and the origin of chimaeroid fishes. Nature, 541(7636), 208.
- McEachran, J. D., & Aschliman, N. (2004). Phylogeny of batoidea. Biology of sharks and their relatives, 79-113.
- Heinicke, M. P., Naylor, G. J. P., & Hedges, S. B. (2009). Cartilaginous fishes (Chondrichthyes). The timetree of life, 9, 320-7.
- Inoue, J. G., Miya, M., Lam, K., Tay, B. H., Danks, J. A., Bell, J., ... & Venkatesh, B. (2010). Evolutionary origin and phylogeny of the modern holocephalans (Chondrichthyes: Chimaeriformes): a mitogenomic perspective. Molecular biology and evolution, 27(11), 2576-2586.
- Vélez-Zuazo, X., & Agnarsson, I. (2011). Shark tales: a molecular species-level phylogeny of sharks (Selachimorpha, Chondrichthyes). Molecular phylogenetics and evolution, 58(2), 207-217.
- Nelson, J. S., Grande, T. C., & Wilson, M. V. (2016). Fishes of the World. John Wiley & Sons.
- Dean, M. N., Summers, A. P., & Ferry, L. A. (2012). Very low pressures drive ventilatory flow in chimaeroid fishes. Journal of morphology, 273(5), 461-479.
- Kolmann, M. A., Huber, D. R., Dean, M. N., & Grubbs, R. D. (2014). Myological variability in a decoupled skeletal system: batoid cranial anatomy. Journal of morphology, 275(8), 862-881.