Lo reproduzco en mi blog íntegramente, por si aún hay alguien que no lo haya leído en Amazings.
Si quieres, puedes ver el resto de mis colaboraciones con Amazings en el link anterior.
En el presente artículo, vamos a continuar nuestro repaso a la historia de la trigonometría aportando breves destellos de información.
En la primera parte de esta historia (la puedes leer en Amazings o en Tito Eliatron Dixit), vimos el origen etimológico de la palabra trigonometría, sus orígenes en la antigua Babilonia y el Egipto de las pirámides, la consolidación en la Grecia clásica y las últimas aportaciones de los matemáticos hindúes.
A continuación veremos qué ocurrió con la avanzada matemática islámica, la siempre misteriosa y pseudo-oculta ciencia china y la llegaday consolidación a la europa occidental.
Los Árabes
La matemática árabe y, en particular, la trigonometría, se alimentó fundamentalmente de la Grecia clásica por un lado y de la India por el otro. De hecho, la mayor parte de los trabajos hindúes fueron no sólo traducidos por matemáticos árabes y persas, sino que también extendieron muchos resultados, alejando la trigonometría de las meras aplicaciones, que era lo que fundamentalmente se hacía hasta esos momentos. Una de sus aportaciones más singulares fue la de tomar r=1 en la circunferencia goniométrica, a diferencia de los antiguos griegos que usaban r=60. De hecho, algunos historiadores apuntan a que en este momento “aparece por primera vez la trigonometría real, en el sentido que el objeto de estudio pasan a ser los triángulos esféricos o planos y los ángulos y lados que los componen”.
A principios del siglo IX, Al-Kwarizmi construye las primeras tablas exactas del seno y el coseno y, por primera vez, tabula los valores de la tangente. Poco después otro matemático árabe, Al-Marwazi, produce la primera tabla de cotangentes.
Ya en el siglo X, los matemáticos árabes y, en particular, Abu al-Wafa, ya utilizaban las 6 razones trigonométricas clásicas (que como bien cantaban Les Luthieres eran: seno, coseno, tangente y secante y la cosecante y la cotangente). Éste matemático árabe consiguió compilar tablas del seno de hasta 8 decimales de precisión y con intervalos de cuarto de grado. Fórmulas de duplicación del seno o el Teorema de los Senos para trigonometría esférica, fueron otras de las aportaciones de al-Wafa.
Y no podemos terminar el apartado sobre trigonometría árabedejar sin hablar del matemático andalusí, procedente de la actual Jaen, Al-Jayyani, quien con su Libro de los arcos esféricos desconocidos, escribe el primer tratado conocido sobre trigonometría esférica.
Teorema del Coseno, tablas de las razones trigonométricas con más de 8 cifras decimales exactas, métodos de triangulación, mediciones del tamaño de la tierra y de distancias entre lugares… todos estos logros también fueron sucesivamente alcanzados por los matemáticos árabes en su afán por ahondar en las entrañas de la trigonometría.
China
Europa Occidental: Trigonometría clásica
La trigonometría llega a europa a partir del siglo XII a través de la cultura árabe. Pero no es hasta el siglo XV cuando se realizan los primeros trabajos de importancia sobre este tema.
Quizás fue en el Opus palatinum de triangulis de Rheticus (siglo XVI), alumno de Copérnico, en donde se definen, por primera vez, las razones trigonométricas en función de triángulos rectángulos y no a través de circunferencias como venía siendo habitual hasta esos momentos. Asimismo, proporcionó tablas, con una exactitud de 10 segundos, de las seis funciones trigonométricas.
El último gran aporte a la trigonometría clásica fue la invención de los logaritmos por el matemático escocés John Napier en 1614. Sus tablas de logaritmos facilitaron en gran medida el arte de la computación numérica, incluyendo la compilación de tablas trigonométricas.
Europa Occidental: Trigonometría analítica
En el siglo XVII comienza a cambiar el carácter geométrico de la trigonometría, inclinándose hacia aspectos más algebraicos y analíticos, y principalmente dos descubrimientos ayudaron en este proceso: el álgebra simbólica, con François Viète a la cabeza; y la geometría analítica, con Fermat y Descartes como principales paladines. De hecho, Viette comprueba que algunas ecuaciones algebraicas pueden resolverse en términos de razones trigonométricas.
La aparición de los números complejos supuso en definitivo impulso a la nueva trigonometría. En particular, Abraham de Moivre en 1722 establece la conocida fórmula
en la que álgebra y geometría se dan la mano a través del binomio de Newton.
en la que se relacionan de una forma maravillosamente simple los 5 números más importantes de toda la historia.
Con la introducción de la función exponencial los límites de la trigonometría son insospechados. A partir de aquí, no se puede decir que haya habido aportaciones muy importantes a la trigonometría en sí, sino que este campo pasa a ser una herramienta analítica más que los matemáticos y científicos de todo el mundo utilizamos para innumerables situaciones: desde series de Fourier hasta mecánica cuántica.
Pero, afortunadamente, la historia continúa, ya que en matemáticas siempre hay cosas que investigar.
Tito Eliatron DixitBibliografía:
Historia y Didáctica de la trigonometría, Francisco Luis Flores Gil.
Historia de la Trigonometría, de El Rincón del Vago.
Trigonometry, en Encyclopaedia Britannica.
History of trigonometry, en Wikipedia inglesa.
Imágenes: Todas están extraídas de los correspondientes artículos de la Wikipedia.