El silicio es comúnmente utilizado para construir dispositivos microelectrónicos. Y también para fabricar dispositivos microfluídicos del tipo popularmente conocido como "laboratorio de un chip", que pueden clasificar y analizar células basándose en sus propiedades moleculares. Los dispositivos de este tipo tienen muchas aplicaciones potenciales en investigación y para hacer diagnósticos, y su pequeño tamaño (el de un chip) es una gran ventaja, pero podrían ser aún más útiles si los científicos pudieran observar las células presentes dentro de los dispositivos.
Gracias al nuevo tipo de microscopio inventado por expertos del Instituto Tecnológico de Massachusetts (MIT) en Cambridge y de la Universidad de Texas en Arlington, ambas instituciones en Estados Unidos, ahora ya es factible medir con precisión y fiabilidad muy elevadas el tamaño y la conducta mecánica de las células ubicadas al otro lado de la oblea de silicio que sirve de soporte para el dispositivo microfluídico.
La estrategia del equipo de Ishan Barman que lo ha hecho posible ha sido aprovecharse de que el silicio es transparente a los rayos infrarrojos y en especial a los de la banda infrarroja cercana. Los científicos adoptaron una técnica de microscopía que funciona enviando un haz láser a través de una muestra y luego dividiendo el haz en dos. Mediante la recombinación de esos dos haces y comparando la información transportada por cada uno, los investigadores pueden determinar la altura de la muestra y su índice de refracción, una medida de cuánto un material fuerza a la luz a desviarse al pasar a través de él.
Usando el nuevo sistema de captación de imágenes infrarrojas atravesando el silicio, los creadores de la técnica han obtenido esta imagen de glóbulos rojos de la sangre. (Gráfico: Cortesía de los investigadores)
La modalidad tradicional de esta técnica utiliza un láser de helio-neón, el cual produce luz visible, pero para la nueva modalidad los investigadores utilizaron un laser de titanio-zafiro que puede ser ajustado a longitudes de onda infrarrojas y en particular de la banda infrarroja cercana. Para este estudio, los científicos encontraron que la luz con una longitud de onda de 980 nanómetros es la que les funcionó mejor.
En el trabajo de investigación y desarrollo también han participado Narahara Chari Dingari, Bipin Joshi, Nelson Cardenas, Samarendra Mohanty, Jaqueline Soares y Ramachandra Rao Dasari.
Información adicional