El proceso natural de fecundación en el ser humano es casi desconocido, ya que de momento es imposible observar su dinámica in vivo. Hay que basarse en los acontecimientos visualizados y descritos en los trabajos de fecundación in vitro. Los gametos femenino (ovocito) y masculino (espermatozoide) deben haber completado normalmente todas sus etapas de maduración antes de ponerse en contacto para que la fecundación se lleve a cabo con éxito. Las células germinales masculinas sufren procesos de división, diferenciación y maduración intratesticular dependientes de las células de Sertoli.
Pero el espermatozoide no completa su ciclo de maduración en el testículo sino que además debe experimentar un proceso de maduración extratesticular para adquirir el potencial completo de movilidad y fertilización. Esto ocurre fundamentalmente a nivel del epidídimo y también en el resto del tránsito a medida que interactúa con las secreciones de las vesículas seminales y de la próstata. Por tanto, la mayoría de los espermatozoides que se encuentran en el eyaculado deben estar totalmente maduros y poseer la capacidad de activarse y de fecundar.
El cúmulo tiene sus células débilmente unidas entre sí y radialmente expandidas, presentando una zona más densa denominada corona alrededor de la zona pelúcida. Durante la maduración, el ovocito adquiere competencia para romper la vesícula germinal, finalizar la meiosis I y II y formar los pronúcleos.
Los dos gametos maduros son muy distintos tanto en forma como en tamaño; mientras las espermátidas pierden casi todo el citoplasma en su maduración, conservando principalmente las vesículas que darán lugar al acrosoma, algunas mitocondrias y el núcleo, los ovocitos acumulan grandes cantidades de proteínas, ribosomas, tRNA, mRNA, etc., necesarios para el desarrollo del embrión.
Normalmente, la fecundación tiene lugar en la parte superior de las trompas, que son canales que comunican la zona ovárica con el interior del útero. El eyaculado se deposita en la vagina de la mujer y los espermatozoides deben atravesar el cuello del útero subiendo por éste hacia las trompas, donde se encontrarán con el ovocito maduro. En este trayecto los espermatozoides sufren un proceso de activación caracterizado por un cambio en la permeabilidad de membrana a los iones calcio y la adquisición de una movilidad hiperactiva.
Son muchos los espermatozoides que llegan a contactar con las capas externas del ovocito; es posible que mientras las intentan atravesar, gran cantidad de ellos sufran la reacción acrosómica, liberando enzimas que ayudarán a disgregar el complejo ovocito-cúmulo. Hay evidencias de que la hialuronidasa, una de las principales enzimas del acrosoma (proporcionada también por el oviducto femenino), se usa con este fin.
Algunos tipos de terasas del acrosoma, que también son proporcionadas por el oviducto, pueden contribuir a facilitar el paso del espermatozoide por la corona. El mecanismo por el cual el espermatozoide se dirige hacia el ovocito es aún desconocido. La disposición radial de las células del cúmulo y la presencia de glicosaminoglicanos en la matriz extracelular, pueden ayudar a dirigir a los espermatozoides hacia el centro de la masa, que es donde se encuentra el ovocito.
Está compuesta fundamentalmente por secuencias repetidas formadas por tres unidades glicoproteicas denominadas ZP1, ZP2 y ZP3. La ZP 1 se considera solamente como un componente estructural. Sólo los espermatozoides con el acrosoma intacto pueden unirse a la ZP3. Tras la unión la ZP3 inicia la reacción acrosómica en el espermatozoide. Parece ser que la ZP3 se une al menos a tres proteínas adhesivas de la membrana del espermatozoide y si alguna está inactivada no se produce esta unión. Cuando estos espermatozoides han completado la reacción acrosómica pueden unirse a la ZP2 que servirá de pasillo hacia el espacio perivitelino.
Una vez que el espermatozoide ha atravesado el espacio perivitelino se encuentra con la membrana vitelina. Tanto la membrana acrosómica interna como la vitelina son mucho más complejas que las membranas fosfolipídicas. El espermatozoide se fija a los microvilli de la superficie del ovocito, el cual responde con la producción de procesos pseudopódicos que engullen la cabeza del espermatozoide.
Es posible que la deshidratación localizada en el punto de contacto inicie interacciones hidrofóbicas que promuevan la fusión. Se ha demostrado que una secuencia de tres aminoácidos presentes en la fibronectina participa, de forma directa, en la unión célula-célula o célula-matriz.
La fibronectina se expresa en la superficie del esperma después de la reacción acrosómica y es posible que interaccione con un receptor del ovocito desempeñando algún papel en la unión del espermatozoide a la membrana vitelina. La fusión entre el espermatozoide y el ovocito provoca profundos cambios en el metabolismo de éste último, como: liberación de calcio, elevación del pH intracelular, incremento de la actividad respiratoria, etc.
Este proceso, llamado activación del ovocito, va acompañado por dos fenómenos visibles: una reacción cortical y la reanudación de la meiosis. La reacción cortical consiste en la descarga de los gránulos corticales del ovocito al espacio perivitelino. Estos gránulos liberan posteriormente su contenido, rico en enzimas hidrolíticos que al contactar con la zona pelúcida causan la hidrólisis parcial de las ZP3 y ZP2.
Después de la fertilización, los gránulos corticales expuestos al espacio perivitelino forman una cubierta nueva que determina el bloqueo de la polispermia una vez producida la fusión de los gametos. En el momento de la ovulación el ovocito tiene detenida su maduración en metafase II. Al mismo tiempo que se produce la fusión de los gametos, se completa la segunda división meiótica en el ovocito y se expulsa el segundo corpúsculo polar. Con la unión de las dos células sexuales se completa el número de cromosomas necesarios para crear el genoma del embrión. Pero la reunión de los cromosomas maternos y paternos no se realiza inmediatamente. Antes tendrá lugar la formación de los dos pronúcleos; el masculino y el femenino.
Se forma así un pronúcleo masculino perfectamente comparable al femenino. La capacidad del citoplasma del ovocito para permitir el desarrollo del pronúcleo masculino depende de la madurez del ovocito. En este punto, el ovocito es una célula binucleada que cuenta con el número normal de cromosomas de la especie y puede comenzar el ciclo de división celular normal mediante una duplicación de los cromosomas. Después de la replicación del ADN los dos pronúcleos se acercan, sus cromosomas se individualizan, las membranas pronucleares se disgregan y los cromosomas homólogos de los dos pronúcleos se organizan en el centro del huso mitótico. Va a empezar la primera división celular del nuevo individuo.