Debido a la participación del gradiente de potasio en el mantenimiento del potencial de membrana y por su función esencial como micronutriente en el organismo, la homeostasis del potasio está doblemente regulada, presentando tanto mecanismos que controlan su balance interno (redistribución y mantenimiento del gradiente electroquímico) como mecanismos que controlan su balance externo (mecanismos de absorción/excreción).
1. Balance interno del potasio Se trata de los mecanismos que controlan, a corto plazo, la redistribución del potasio entre el medio intra y extracelular, por vía hormonal y no hormonal. Debido a las diferencias de concentración existentes entre ambos medios (intra y extracelular), pequeñas variaciones en las mismas, van asociadas a cambios importantes en ambos compartimientos; así, un aumento o disminuición de la concentración de potasio extracelular, puede llevar a aumentar o disminuir a la mitad, la concentración intracelular, mientras que,un aumento a nivel intracelular, apenas afecta a la concentración extracelular del potasio. Se traduce todo en cambios en el gradiente electroquímico del potasio, que por asociación directa, provocan una alteración del potencial de membrana, generando problemas de polarización (cambios de carga) tanto en células excitables y no excitables, que afectan a la transmisión del impulso nervioso, la contracción muscular o la función cardíaca. Para controlar los aportes y pérdidas en ambos medios celulares, existen dos mecanismos:
- Mecanismos que permiten la entrada de potasio a la célula -> la bomba de Na+/K+ ATPasa (vía no hormonal), hormonas como la insulina, los agonistas ß-adrenérgicos, los mineralcorticoides (activadoras de la bomba ATPasa) y episodios de alcalosis metabólica. La bomba Na+/K+ ATPasa, a través del gasto de ATP (adenosín trifosfato, “moneda energética”), permite el paso de potasio al interior de las células en contra de gradiente (de zonas de menor concentración a zonas de mayor concentración); por la entrada de dos iones de potasio, salen tres iones de sodio al exterior celular, con el fin de mantener el potencial de membrana.
- Mecanismos que permiten la salida de potasio de la célula -> hormonas como los agonistas a-adrenégicos y los glucocorticoides (inhibidoras de la bomba ATPasa), episodios de acidosis metabólica, aumento del volumen celular o hipertonicidad celular.
2. Balance externo del potasio
Cuando, por diversas y múltiples razones, existe un desequilibrio en alguno de los balances o en los factores que los afectan, se pueden observar dos estados fisiopatológicos del metabolismo del potasio:
A) Hiperpotasemia o Hipercaliemia. Situación fisiológica caracterizada por un aumento de los niveles de potasio en sangre superiores a 5,5 mmol/L. El principal efecto que se observa en el organismo ante un episodio de hiperpotasemia, es una despolarización de la membrana de las células (el potencial de membrana pasa de ser negativo a positivo), que lleva a la aparición de trastornos de la conducción nerviosa y una disminución del tiempo de repolarización de la membrana. A nivel cardíaco, esto se observa bien en un electrocardiograma, pues por la despolarización de la membrana de las células musculares cardíacas, se produce una variación de las ondas T, P y espacios QT y PR.
Esta alteración, se traduce en una superexcitación de las células cardíacas y en la generación de arritmias (con síntomas como palpitaciones, mareo, síncope, dolor torácico o pérdida de conocimiento) y finalmente, paradas cardíacas. A nivel muscular, se observa astenia, hormigueos, calambres, debilidad muscular, hipoventilación o tetraplegía en los casos más graves. Las causas de la hiperfosfatemia o hipercaliemia, pueden ser debidas a una modificación del balance interno (acidosis metabólica, diabetes mellitus, anemia, ejercicio muscular intenso y prolongado, hemolisis masiva, hemorragias gástricas, rambdomiolisis o quemaduras extensas), del balance externo (insuficiencia renal aguda, insuficiencia renal crónica, nefropatía diabética, nefritis intersticial, enfermedad de Addison, hipoaldosteronismo, hiporreninemia y acidosis tubular renal distal), por una intoxicación farmacológica (diuréticos ahorradores de potasio, ciclosporina, litio o inhibidores de la ECA), por exceso de ingesta de potasio (administración por vía oral de potasio (superior a 2,5 mmol/Kg) y/o por vía venosa (superior a 40-100 mmol/hora)) o en la formación de anticuerpos antimembrana en la región tubular de un riñón transplantado.
El tratamiento frente a una hiperfosfatemia, puede consistir en la administración de calcio (regula el potencial de membrana), de bicarbonato (regula la acidosis metabólica), insulina (efecto activador de la bomba Na+/K+ ATPasa), diurético de asa como la furosemida o broncodilatadores como el salbutamol (Ventolin). Se estudia también el posible efecto terapeútico frente a las hiperfosfatemias de la regaliz, por la similitud de los efectos fisiológicos entre el ácido glicirrícico y la aldosterona. B) Hipopotasemias o hipocaliemias.
– NOTA AL LECTOR – Cuidado con los condimentos para personas con enfermedad renal hipertensas. La mayoría de las especies secas tienen un elevado contenido de potasio (menos si son frescas, ej. albaca, tomillo, romero, laurel, etc), encontrándose más concentrado en el caso del curry y el pimentón (picante y dulce).
Volviendo de nuevo a la relación enfermo renal – ingesta de potasio, podemos encontrar ciertas paradojas. En muchos casos, los pacientes sufren una enfermedad renal crónica debido a la persistencia de estados hipertensos, con o sin control farmacológico, que pueden desembocar (en los casos más graves) en la aparición de accidentes cerebrovasculares. No obstante, parece ser que el propio potasio (en mayor o menor concentración según la etapa de la ERC), como suplemento en una dieta alta en sodio, ejerce cierto efecto hipotensivo, cardioprotector y en el retraso de la enfermedad renal causada por hipertensión (observado en estudios con ratas) por el efecto antiproteinúrico del potasio. Curioso, no?. Además de esto, también se ha llegado a la conclusión que el consumo de alimentos ricos en potasio o suplementos (bicarbonato potásico) ejerce un efecto protector frente a la pérdida ósea relacionada con la edad (osteoporosis) y la reducción de cálculos renales, ambos osteoporosis y cálculos renales, habituales en los enfermos renales crónicos por la afectación sufrida sobre el metabolismo del calcio, el fósforo y la vitamina D. Sin embargo, estas paradojas aún requieren un estudio mucho más intensivo, puesto que no existe rotundidad en las afirmaciones obtenidas entre los diferentes estudios.
Finalmente, para aquellos (enfermos o cuidadores), que queráis conocer el contenido de potasio de los alimentos de una manera directa y fiable, os recomiendo esta app, Pukono, desarrollada por la Fundación Althaia y la Fundación Alícia, y con colaboración de Amgen, donde encontraréis una guía de alimentos, recetas y menús validados por profesionales de la salud y la alimentación.
Fuentes Cornejo, K. Et al “Evaluación de la ingesta dietética y excreción urinaria de sodio y potasio en adultos” Revista médica chilena vol.142 no.6 (2014) ; Wang Hasio-Han et. al. “Hypokalemia, Its Contributing Factors and Renal Outcomes in Patients with Chronic Kidney Disease” PLoS One (2013) ; I. A. Checheriţă et. al. “Potassium level changes – arrhythmia contributing factor in chronic kidney disease patients” Rom. J. Morphol. Embryol. (2011) ; Ming-Fang Hsieh, et al “Higher Serum Potassium Level Associated with Late Stage Chronic Kidney Disease” Chang Gung Med. J. Vol. 34 No. 4 July-August (2011) ; Noori, N. et al. “Dietary Potassium Intake and Mortality in Long-Term Hemodialysis Patients” American Journal Kidney Disease (2010) ; Tejada Cifuentes, F. “Alteraciones del equilibrio del Potasio: Hipopotasemia” Revista Clín. Med. Fam. v.2 n.3 (2008) http://tratado.uninet.edu/c050301.html http://nefrologiadigital.revistanefrologia.com/es-monografias-nefrologia-dia-articulo-trastornos-del-potasio-XX342164212000450
http://lpi.oregonstate.edu/es/mic/minerales/potasio http://advances.nutrition.org/content/4/3/368S.long http://www.hsph.harvard.edu/nutritionsource/sodium-potassium-balance/ http://www.nlm.nih.gov/medlineplus/spanish/ency/article/002413.htm http://www.observatoriodelasaludcardiorenal.es/herramientas_tablasFrutas.php
EL FÓSFORO Cumpliendo con lo prometido en la anterior reseña (puedes leerla aquí), era hora de ahondar en las particularidades del metabolismo del fósforo sobre el organismo, con especial atención a las personas enfermas renales. Los motivos, no varían mucho de los descritos en la anterior entrada; arrojar un poco más de información sobre el papel de estos micronutrientes en la enfermedad renal. Así que, si quieres continuar esta serie sobre los nutrientes claves de la ERC… no lo dudes, sigue leyendo!
El fósforo (P), además de un no metal perteneciente al grupo 15 (nitrogenoideos) de la tabla periódica, es un mineral esencial para la vida. En el organismo se encuentra fundamentalmente es su forma inórganica, como grupo fosfato, [PO4]-3 o pirofosfato (PPi), formando parte del 85% del hueso, un 70% del medio intracelular y menos del 1% del líquido extracelular. Se trata de un mineral que participa en el correcto funcionamiento de numerosas vías fisiológicas, tales como, el desarrollo del esqueleto y la mineralización ósea, la composición de la membrana (por su participación química en la estructura de los fosfolípidos), la estructura de nucleótidos (ADN y ARN), el mantenimiento del pH de plasma (efecto tampón del grupo fosfato), la señalización, integridad y división celular (por fosforilización y desfosforilación de enzimas y proteínas, que activan o desactivan rutas metabólicas, vías de señalización o reacciones químicas), la contracción muscular, la secreción hormonal o la función nerviosa. Estos vínculos fisiológicos se conocen gracias a que el fósforo elemental, fue aislado por primera vez en orina humana por Hennig Brand, alquimista alemán, en el siglo XVII. A partir de este hallazgo, otros químicos consiguieron aislar fósforo elemental a partir de huesos humanos incinerados y de huesos fosilizados de diversas especies.
Cuando se ve alterada la homeostasis del fósforo, se observan dos estados fisiopatológicos característicos del metabolismo del fósforo: la hiperfosfatemia y la hipofosfatemia.
A) Hiperfosfatemia
El principal tratamiento frente a la hiperfosfatemia es la reducción de la ingesta de fósforo a 800 – 1000 mg/día, en caso de enfermos renales) o bien el suministro de quelantes del fósforo (hidróxido de aluminio coloidal, lantano, carbonato de calcio, etc) tras las principales ingestas, encargados de impedir la absorción intestinal (y consecuentemente, la posterior reabsorción a nivel renal) o hemodiálisis, en casos de enfermos renales crónicos.
B) HipofosfatemiaSe observa cuando los niveles de fósforo sérico están por debajo de 2,5 – 3 mg/dl. Las causas que generan una hipofosfatemia son, al igual que en la hiperfosfatemia, debidas a una alteración en la redistribución intra y extracelular del fósforo, a una disminución en su ingesta y una alteración en la excreción renal. En el primer caso, suele producirse ante suministros de glucosa exógena (la entrada de glucosa en la célula mediada por la insulina, provoca un transporte de fósforo del medio extracelular al intracelular y un aumento de los procesos de fosforilación durante las reacciones glucolíticas), la aparición de estados de alcalosis metabólica inducidos o no (elevación del pH sanguíneo, hiperventilación excesiva en tiempo e intensidad o por administración de bicarbonato sódico) y de cetoacidosis metabólica (debido a vómitos, glucosuria, etc), ante el suministro de catecolaminas, hormonas anovulatorias o en estados de alcoholismo crónico y períodos de abstinencia.
Debido al alto contenido en fósforo de la mayor parte de alimentos, tanto a nivel de fósforo de origen proteico como fósforo oculto en aditivos (ácido fosfórico (E338), fosfatos (E339, E340, E341, E343), difosfatos (E450), trifosfatos (E451), polifosfatos (E452), las recomendaciones dietéticas para pacientes con un mayor tendencia a sufrir hiperfosfatemias (ej: enfermos renales crónicos), necesitan ser ajustadas continuamente (dependen de la edad, estatura, peso, función renal residual y dosis de diálisis), para por un lado, evitar estados de desnutrición proteico-energética y por otro, evitar o limitar el consumo de fósforo a lo largo de la diferentes ingestas realizadas a lo largo del día. Para todo ello es necesario conocer qué alimentos tienen mayor contenido de fósforo, algo que a veces resulta muy complejo, dada la limitada información del etiquetado de productos y la variabilidad de datos presentes en las tablas de composición de alimentos. Debido a la relación entre presencia de fósforo y alto contenido de proteínas (por la unión del fósforo orgánico a éstas), además del contenido proteico es necesario tener presente el cociente o ratio fósforo [mg]/proteína [g]; las guías KDOQI (Kidney Disease Outcomes Quality Initiative) recomiendan un cociente en la dieta entre 12 – 16 mg de fósforo/g de proteína o de 0,6 – 0,8 g de proteína/ kg / día, siendo siempre prioritarias las proteínas de alto valor biológico (contienen un alto porcentaje de aminoácidos esenciales para garantizar saldo neto en el balance de nitrógeno del organismo). Estas tablas, se concentran en alimentos con excesiva cantidad de fósforo y con poca cantidad de proteína, así como muestra aquellos con un mayor contenido de fósforo a igual contenido de proteína (fósforo oculto) y son independientes del tamaño de porción de alimento ingerida.
A grandes rasgos, podemos decir que: las leches procesadas (semidesnatada, desnatada, sin lactosa, quesos para gratinar, etc) tienen más contenido de fósforo que las bebidas vegetales de soja; las magdalenas y productos de bollería industrial (excepto el croissant) son productos de elevado contenido en fósforo oculto en aditivos; embutidos y productos de charcutería bajos en grasa contienen elevadas cantidades de fósforo en forma de aditivos para aportar textura y sabor, destacan ciertos valores bajos de fósforo observados en bacón ahumado, chopped, chorizo y fuet; en cuanto a los huevos, la yema contiene un alto contenido de fósforo pero la clara, es de las mejores proteínas de alto valor biológico que se pueden consumir, observándose menos contenido de fósforo en huevos de pato y de codorniz; el contenido de fósforo en refrescos es considerablemente alto. Respecto a productos frescos y congelados cárnicos y de pescadería, se observa un mayor contenido de fósforo en productos congelados que en frescos, sobre todo si los congelados se encuentra pre-elaborados (croquetas, empanadas, pizzas, etc).
Respecto a la biodisponibilidad, es necesario indicar que, en el caso de proteínas vegetales y proteínas animales, es mejor la ingesta de proteínas vegetales puesto que el fósforo presente en este tipo de alimentos presenta una biodisponibilidad más baja (asociado a fitatos, de difícil digestión por falta de la enzima fitasa en el intestino delgado humano) que el presente en proteínas de origen animal (NOTA: parece que, el uso de probióticos favorece una mejor absorción del fósforo asociado a fitatos y que también, la ingesta de proteínas vegetales, repercuten en una menor producción de toxinas urémicas tal es como sulfato de p-cresilo y sulfato de indoxilo, implicadas en una mayor progresión de la ERC); por su parte, el fósforo presente en forma de aditivos, posee una mayor biodisponibilidad (por su facilidad de disociación en el tracto digestivo), motivo por el cual este tipo de alimentos están tan limitados en la dieta de personas con enfermedad renal crónica. De igual manera, sin consenso mayoritario al respecto, se considera que la cocción y/o la sumersión de alimentos en auga, podría facilitar la reducción de contenido de fósforo en los alimentos.
Finalmente, para aquellos (enfermos o cuidadores), que queráis conocer el contenido de fósforo de los alimentos de una manera directa y fiable, os recomiendo esta app, Pukono, desarrollada por la Fundación Althaia y la Fundación Alícia, y con colaboración de Amgen, donde encontraréis una guía de alimentos, recetas y menús validados por profesionales de la salud y la alimentación.
Espero que os haya gustado esta serie sobre los principales micronutrientes que afectan a la enfermedad renal. Espero que en algún momento, pueda dedicarle otra entrada al efecto del magnesio y el sodio, que indirectamente, también están relacionados con los efectos fisiológicos generados y/o causantes de la enfermedad renal crónica y de las enfermedades cardiovasculares.
Fuentes Yao – Lung L. et al “Hyperphosphate-Induced Myocardial Hypertrophy through the GATA-4/NFAT-3 Signaling Pathway Is Attenuated by ERK Inhibitor Treatment” Cardiorenal Med (2015) ; Lou – Arnal, Luis M. et al “Fuentes ocultas de fósforo: presencia de aditivos con contenido en fósforo en los alimentos procesados” Nefrologia (2014) ; Bachetta, J & Salusky, I.B. “Evaluation of hypophosphatemia: lessons from patients with genetic disorders” Am J Kidney Dis. (2012) ; Imel E. A & Econs M.J “Approach to the Hypophosphatemic Patient” J Clin Endocrinol Metab. (2012) ; Bellasi, A et al “Chronic Kidney Disease Progression and Outcome According to Serum Phosphorus in Mild-to-Moderate Kidney Dysfunction” Clin J Am Soc Nephrol. (2011) ; Hruska, K. A et al “Hyperphosphatemia of Chronic Kidney Disease” Kidney Int. (2008) ; Carrero, JJ. & Cozzolino, M. “Nutritional therapy, phosphate control and renal protection”. Nephron. Clinical Practical ; Vanessa Lopes Martín. Centro de Diálisis FRIAT, Los Olmos. Segovia. Fundación Renal Iñigo Álvarez de Toledo.http://scielo.isciii.es/scielo.php?pid=S0211-69952013000400010&script=sci_arttext http://jasn.asnjournals.org/content/16/11_suppl_2/S107.full http://www.revistanefrologia.com/es-publicacion-nefrologia-articulo-fuentes-ocultas-fosforo-presencia-aditivos-con-contenido-fosforo-los-alimentos-X0211699514054318 http://ndt.oxfordjournals.org/content/25/10/3241.long http://tratado.uninet.edu/c050402.html
Quiero agradecer enormemente a Tatiana por haber dejado que pusiera sus dos post en mi blog!