Como explica el profesor Edward Frenkel (Kolomna, Rusia, 1968) en el prólogo de su libro Amor y Matemáticas (Ariel) "hay un mundo secreto ahí fuera. Un universo oculto, paralelo, de belleza y elegancia, intrincadamente conectado con el nuestro. Es el mundo de las matemáticas. Y a la mayoría de nosotros nos resulta invisible".
Frenkel es uno de los mayores divulgadores de las matemáticas modernas, además de ser uno de sus más prolíficos investigadores. En su nuevo libro trata de acercar sus conocimientos al público general, que suele alejarse de las matemáticas como de la peste, pensando que nunca jamás entenderá nada de lo que puedan explicarle.
En su ensayo Frenkel no sólo demuestra que nuestro miedo a las matemáticas está injustificado, además nos invita a aprender ciertos conocimientos básicos que pueden ayudarnos en nuestro día a día; y no para ir a hacer la compra, si no para defender nuestros derechos como ciudadanos libres.
El profesor de la Universidad de Berkley ha contestado a las preguntas de El Confidencial. Y han bastado un puñado de preguntas para que el matemático nos convenza de acercarnos a su campo de estudio.
PREGUNTA. La mayoría de la gente piensa que las matemáticas sólo tienen que ver con los números. Pero como explicas en el libro no es cierto. ¿Con que tienen que ver entonces?RESPUESTA. Sí, es una falacia común. La mayoría de nosotros sólo conocemos las matemáticas que hemos estudiado en la escuela, que son muy limitadas y obsoletas. De hecho, decir que las matemáticas sólo tienen que ver con los números es como decir que el arte es el estudio de la composición química de una pintura. Son mucho más que eso.
Como muestro en mi libro Amor y Matemáticas hay muchas áreas de las matemáticas que no se basan en los números. Por ejemplo, está la geometría, que estudia las formas en todas las dimensiones; está el estudio de la simetría, que tiene aplicaciones en muchas áreas de la ciencia, desde la ingeniería a la física cuántica. Está también el estudio del infinito. Piensa que todo número es finito, así que el infinito es por fuerza algo completamente distinto. Las matemáticas son un camino de acercarse al infinito. Y esa es su belleza.
P. La de matemático es una de las profesiones con menos desempleo, pero la gente joven no se siente atraída por una disciplina que consideran demasiado compleja o aburrida. ¿Por qué cree que ocurre?
R. El principal problema es que en nuestras escuelas hoy en día no enseñamos a los alumnos de qué van en realidad las matemáticas ni para qué sirven, en vez de eso hacemos que memoricen procedimientos y cálculos que aparecen ante ellos desprovistos de cualquier significado. Matemáticas se convierte en una asignatura fría, aburrida, sin vida e irrelevante. Y lo que es peor, muchos de nosotros hemos sufrido experiencias traumáticas en nuestra clase de matemáticas de niños, como ser avergonzados por un profesor delante de toda la clase por haber dado una solución incorrecta. Estos recuerdos permanecen junto a nosotros incluso aunque no seamos conscientes de ello. Y esto crea miedo a las matemáticas.
Ahora hablemos de la materia que se imparte. ¿Sabías que la mayoría de las matemáticas que se estudian hoy en día en nuestras escuelas tienen más de 1.000 años? Por ejemplo, la formula para solucionar las ecuaciones de segundo grado estaba en un libro de al-Khwarizmi que se publicó en el año 830, y Euclides sentó las bases de su geometría en el año 300 a.C, hace 2.300 años. Si el mismo lapso de tiempo se diera en física o biología hoy no sabríamos nada del Sistema Solar, el átomo o el ADN. Especialmente en la actualidad, cuando las matemáticas están a nuestro alrededor todo el rato (piensa en los ordenadores, los móviles, los navegadores GPS, los videojuegos, los algoritmos de búsqueda...). Pero no estamos enseñando a nuestros hijos nada de esto y seguimos atiborrándoles con las mismas enseñanzas antiguas. No tiene ningún sentido.
La gente dice que tenemos que seguir estudiando las cosas antiguas y aburridas porque son necesarias para entender las nuevas y excitantes ideas. Pero puedo decirte una cosa como matemático profesional: eso no es cierto. No necesitas saber geometría euclidiana, la geometría de las líneas en un plano, para entender la geometría de una esfera, la geometría de los paralelos y los meridianos en un globo, que es curvo, no plano. Los estudiantes pueden captar esta geometría no euclidiana aún más rápido, ¡y es mucho más divertida! Y, de hecho, es más cercana a la realidad porque la Tierra es redonda y su superficie es esférica. ¡No es plana! Por desgracia en nuestras clases de matemáticas seguinos pensando que el mundo es plano.
P. La enseñanza de matemáticas en España deja bastante que desear. Los niños memorizan los procedimientos pero en la mayoría de los casos no tienen ni idea del funcionamiento de las operaciones. ¿Cómo deberíamos enseñar matemáticas?R. Para empezar deberíamos abandonar esta obsesión por los exámenes y los test. Esto es parte de nuestra obsesión general por medirlo y calcularlo todo. Pero las cosas más importantes de la vida no se pueden medir.
Por supuesto, necesitamos exámenes en nuestras escuelas, pero lo que está ocurriendo hoy en día es que forzamos a los profesores a gastar gran parte de sus clases en preparar a los estudiantes para hacer exámenes. ¿Y cuál es la forma más obvia para preparles? La memorización. Así que, no sólo todo el mundo está estresado (profesores, estudiantes y padres), además los alumnos acaban memorizando fórmulas matemáticas y procedimientos si comprender realmente nada. Las matemáticas entonces se convierten en un infierno y están deseando olvidarlo todo después del examen.
Lo que debemos hacer es presentar las matemáticas no como un conjunto de cálculos y procedimientos que se deben memorizar para superar un examen sino como lo que son realmente: un universo paralelo de belleza y elegancia, como el arte, la literatura o la música. Y debemos mostrar a los alumnos las conexiones entre las matemáticas y nuestra vida cotidiana, para que les motive estudiar.
P. En el prólogo del libro afirma que no hay libertad sin matemáticas, pero a su vez las matemáticas permiten establecer sistemas de control. La gente poderosa suele decir que las matemáticas nunca fallan, que son la verdad absoluta. ¿No cree que un mundo dominado por completo por las matemáticas dejaría de ser libre?
R. Cuando digo que sin matemáticas no hay libertad quiero decir que si somos unos ignorantes de las matemáticas no podemos ser libres, porque entonces estamos dando el poder a una pequeña élite, que es la que conoce y usa las matemáticas. Y las consecuencias de esto pueden ser perjudiciales. Las matemáticas son muy poderosas, pero ese poder puede no usarse para el bien, sino para el mal.
En la crisis económica global, por ejemplo, la élite usó modelos matemáticos inadecuados para generar enormes beneficios engañado al resto de la gente (y a veces también a ellos mismos).
La actitud prevalente en la sociedad actual es 'odio las matemáticas. Son demasiado difíciles y no voy a entenderlas'
No estoy diciendo que todos necesitemos aprender complicados detalles sobre las matemáticas. Estoy hablando de un conocimiento general, un sentido de qué es la matemática y cómo se usa. Esto es muy importante en este "mundo feliz" en el que vivimos. Si somos unos ignorantes de las matemáticas, estamos a merced de la manipulación.
Alguien con un conocimiento rutinario de la estadística matemática no invertiría jamás en una estructural piramidal cuestionable (como la que Madoff tiene montada en Estados Unidos) sabiendo que el porcentaje de beneficios ha sido el mismo año tras año. Desafortunadamente, la actitud prevalente en la sociedad actual es "odio las matemáticas. Son demasiado difíciles y no voy a entenderlas". Y las compañías de finanzas siguen aprovechándose de esto.
Otro ejemplo es la manipulación de las estadísticas económicas, que explico en detalle en un artículo en En 1996, una comisión nombrada por el gobierno de EEUU se reunió en secreto y alteró la formula para calcular el IPC, la medida de la inflación que determina los tramos impositivos y los beneficios sociales de millones de americanos. Pero apenas hubo una discusión pública sobre la nueva fórmula y sus consecuencias. ¿Por qué? Porque la gente tenía miedo de hablar sobre matemáticas. Tenían miedo de no entender las cosas y sentirse estúpidos. Así que se escondieron. Le dieron al gobierno la potestad de usar las fórmulas matemáticas como le viniera en gana. Tenemos que ser conscientes de las consecuencias que tienen nuestra ignorancia de las matemáticas.
P. Hoy en día muchos negocios dependen de algoritmos matemáticos, pero la mayoría de la gente no los entiende. ¿Por qué deberíamos fiarnos de ellos?R. No debemos fiarnos de esos algoritmos, ni tampoco de las compañías que los están utilizando. Mira, por ejemplo, las recomendaciones con las que nos bombardean a diario cuando compramos productos online, como los libros de Amazon. Por supuesto, esto puede ser útil. De esta manera he conocido libros de los que no había oído hablar y que realmente he disfrutado. Pero la otra cara de esto es que si seguimos ciegamente estas recomendaciones sin entender cómo funcionan, empezaremos a engañarnos a nosotros mismos.
La realidad es que estas recomendaciones son generadas por algoritmos matemáticos que relacionan nuestros datos (por ejemplo, qué libros compramos o cuáles nos gustan) con los de otra gente. Pero estos algoritmos pueden ser manipulados con facilidad o ser defectuosos. En teoría, puede haber un interés financiero o político que nos guiará a elegir determinados libros. No creo que esto este ocurriendo ahora mismo, pero debemos ser conscientes de que es algo que podría ocurrir.
El desarrollo de la IA que es crucial para el futuro de la Humanidad, se pone en manos de Kurzweil y no hay prácticamente ninguna supervisión
Más peligroso aún, en mi opinión, es lo que está pasando con el desarrollo de la Inteligencia Artificial (IA). Para ser claros, estoy hablando de la Inteligencia Artificial General, la idea de que podemos construir robots con el mismo nivel de inteligencia que los humanos. Algunas personas, como Ray Kurzweil, hablan seriamente de la posibilidad de conectar nuestros cerebros a la nube en 20 años, en 2035, lo que permitiría transferir nuestras mentes a los ordenadores en 2045 (lo que el llama "singularidad tecnológica"). Lo que esto significa es que él, y otros como él, creen que los humanos no somos más que máquinas, y lo único que necesitamos es actualizar nuestro hardware y software.
Estas ideas son insensatas y muy peligrosas y, además, contradicen a la ciencia moderna, como expliqué recientemente en mi discurso en el Festival de Ideas de Aspen. Pero ¿adivina qué? En 2012 Kurzweil fue contratado en Google como director de ingeniería, al cargo del desarrollo de investigación de la IA. Y Google es la mayor compañía de tecnología de la información del mundo, que ha comprado todas las empresas de IA y robótica que ha podido. Recientemente ha pagado casi mil millones de dólares por dos start-ups que trabajan la IA, Deep Mind y Magi Leap.
Hace un año y medio, Google anunció la creación de un "comité de ética" para resolver cuestiones relacionadas con la IA. Bien, busqué en Google "comité de ética de Google" y no encontré ninguna información al respecto. En otras palabras, el desarrollo de la IA que es crucial para el futuro de la Humanidad, se pone en manos de Kurzweil, y no hay prácticamente ninguna supervisión. ¿Realmente queremos permitir que esto suceda? Es hora de que despertemos.
P. Cada vez es más común escuchar que todas las facetas de nuestra vida se pueden explicar mediante números. ¿Hay algún campo del conocimiento para el que las matemáticas no tenga nada que decir?R. No creo que las matemáticas puedan explicarlo todo. Por ejemplo, las matemáticas no pueden explicar el amor. Es por ello que mi libro se llama "Amor y Matemáticas". Son los dos pilares de la Humanidad, y ninguno puede reemplazar al otro. Necesitamos ambos.
Fuente: Miguel Ayuso.
C. Marco