Revista Ciencia

La 'partícula de Dios': qué es y qué hace

Publicado el 04 julio 2012 por Fluornoy2414 @Fluornoy2414

Colisión entre protones

Imagen generada por computador que muestra una colisión entre protones en el experimento del CERN.

El mundo habla del tema, pero ¿todos lo entienden? Esta explicación le ayudará a despejar dudas.

Los científicos del centro de investigación CERN, en Suiza, presentaron este miércoles sus últimos hallazgos en la búsqueda del bosón de Higgs, una partícula subatómica clave en la formación de estrellas, planetas y eventualmente de vida, tras el Big Bang de hace 13.700 millones de años (lea también: Hallan el mayor indicio hasta la fecha de la 'partícula de Dios'). 
¿Qué es la partícula de Dios?
Esta partícula es la última pieza que falta en el Modelo Estándar, la teoría que describe la formación básica del universo. Las otras 11 partículas que se predecían en el modelo ya se han encontrado, y hallar el Higgs validaría el modelo. Descartarla o encontrar algo más exótico obligaría a revisar nuestra comprensión de cómo se estructura el universo.
Los científicos creen que en la primera billonésima de segundo tras el Big Bang, el universo era una gran sopa de partículas avanzando en distintas direcciones a la velocidad de la luz, sin ninguna masa apreciable. Fue a través de su interacción con el campo de Higgs como ganaron masa y, con el tiempo, formaron el universo. El campo de Higgs es un campo de energía teórico e invisible que invade todo el cosmos. Algunas partículas, como los fotones que componen la luz, no se ven afectadas por él y por lo tanto no tienen masa. A otras las cubre, produciendo un efecto similar al de los cereales reunidos en una cuchara. Imaginen a George Clooney (la partícula) caminando por la calle con un séquito de periodistas (el campo de Higgs) que le rodean. Un tipo normal en la misma calle (un fotón) no recibe ninguna atención de los paparazzi y sigue con su vida. La partícula de Higgs es el rastro que deja el campo, comparable a una pestaña de uno de los fotógrafos. Esa partícula es teórica, y su existencia fue propuesta en 1964 por seis físicos, entre los que estaba el británico Peter Higgs. Su búsqueda comenzó a principios de los 80, primero en el ahora cerrado colisionador de partículas Tevatron del Fermilab, cerca de Chicago, y más tarde en una máquina similar en el CERN. La investigación se intensificó a partir de 2010, cuando se puso en marcha el Gran Colisionador de Hadrones del centro europeo.
¿Qué es el modelo estándar?
El Modelo Estándar es a los físicos lo que la teoría de la evolución es a la biología. Es la mejor explicación que ha encontrado la física sobre cómo se estructuran los elementos que forman el universo. Describe 12 partículas fundamentales, gobernadas por cuatro fuerzas básicas.
Pero el universo es un enorme lugar y el Modelo Estándar sólo explica una pequeña parte de él. Los científicos han identificado una distancia entre lo que podemos ver y lo que debe haber ahí. Esa distancia debe llenarla algo que no comprendemos por completo, a lo que han bautizado como "materia oscura". Además, las galaxias se van distanciando unas de otras más deprisa de lo que deberían según las fuerzas que sí conocemos. Esta otra incógnita la explica la "energía oscura". Se cree que la materia y la energía oscura, de las que entendemos muy poco, suponen el 96 por ciento de la masa y la energía del cosmos. Confirmar el Modelo Estándar, o quizá modificarlo, sería un paso hacia el santo grial de la física, una "teoría de todo", que incluya la materia oscura, la energía oscura y la fuerza de gravedad, que el Modelo Estándar tampoco explica. Además, podría arrojar luz sobre ideas aún más esotéricas, como la posibilidad de los universos paralelos. El portavoz del CERN, James Gillies, ha dicho que al igual que las teorías de Albert Einstein desarrollaron y construyeron sobre la obra de Isaac Newton, el trabajo que hacen ahora los miles de físicos del CERN tiene el potencial de hacer lo mismo con la obra de Einstein.
¿Cuál es el umbral para tener una prueba?
Para poder anunciar un descubrimiento, los científicos se han marcado el objetivo de certidumbre que llaman "5 sigma". Esto significa que hay una o menos de una entre un millón de que las conclusiones de los datos recogidos del acelerador de partículas sean el resultado de un error estadístico. Los dos equipos que buscan el Higgs en el CERN, llamados Atlas y CMS, ahora tienen el doble de datos que les permitieron anunciar "fascinantes atisbos" del Higgs a finales de año y esto podría llevar sus resultados al otro lado de ese umbral de la prueba.
REUTERS


Volver a la Portada de Logo Paperblog