Revista Ciencia

Transdiferenciación directa de espermatogonias progenitoras y madre(troncales) a tejidos reproductivos y no reproductivos de todas las capas germinales

Por Luis Tataje Lavanda

Resumen:

Las células madre poseen un gran potencial clínico para la reparación y regeneración de tejidos en humanos. El uso de las células madres embrionarias (ES) es eticamente controversial, por lo que requiere buscar recursos alternativos para obtención de "stem cells". Las células madres testiculares de espermatogonias (SSCs) producen un linaje espermatogénico. In vitro, las SSCs muestran tener la habilidad de dar origen a células con capacidad pluripotencial como las ES.
Transdiferenciación directa de espermatogonias progenitoras y madre(troncales) a tejidos reproductivos y no reproductivos de todas las capas germinales
Los autores plantean la hipótesis de que las espermatogónias madres (progenitoras) podrían transdisferenciarse directamente en diferentes tipos tejidos celulares si son recombinadas con inductores mesenquimales provenientes de  los órganos fetales (neonatales) por medio de metodologías recombinantes (separación de tejidos) y de crecimiento in vivo. La proteína transgénica verde fluorescente fue usada para marcar los linajes celulares. Los autores mostraron que sus resultados indican que las espermatogónias madres (progenitoras) recombinadas con el mesenquima apropiado pueden transdisferenciarse directamente in vivo en tejidos de todas las capas germinales, incluyendo tejidos prostático, uterino y piel. Además, los tejidos transdiferenciados expresan marcadores moleculares, histológicos y funcionales propios del epitelio correspondiente. La habilidad de las espermatogónias madre (progenitoras) para generar directamente varios epitelios sobresale por su potencial clínico, y si las SSCs de humano adulto tienen similares propiedades, esto tendría aplicaciones directas en la medicina regenerativa.


Fuente:

  • Simon L, Ekman GC, Kostereva N, Zhang Z, Hess RA, Hofmann MC, Cooke PS. Direct transdifferentiation of stem/progenitor spermatogonia into reproductive and nonreproductive tissues of all germ layers. Stem Cells. 2009 Jul;27(7):1666-75. Disponible en: http://www3.interscience.wiley.com/journal/122328374/abstract?CRETRY=1&SRETRY=0
    Abstract:
    Pluripotent stem cells have great clinical potential for tissue regeneration/repair in humans. The use of embryonic stem (ES) cells is ethically controversial, leading to searches for other sources of pluripotent stem cells. Testicular spermatogonial stem cells (SSCs) produce the spermatogenic lineage. Under in vitro conditions, SSCs have the ability to give rise to pluripotent ES-like cells. We hypothesized that stem/progenitor spermatogonia could directly transdifferentiate into different tissue types if they were recombined with inductive mesenchymes from fetal/neonatal organs using a tissue separation/recombination methodology and grown in vivo. Green fluorescent protein transgenic mice were used to track cell lineages. Our results indicate that stem/progenitor spermatogonia recombined with the appropriate mesenchyme can directly transdifferentiate in vivo into tissues of all germ layers, including prostatic, uterine, and skin epithelium. In addition, transdifferentiated tissue expressed molecular, histological, and functional markers of the appropriate epithelium. The ability of stem/progenitor spermatogonia to directly generate various epithelia emphasizes their clinical potential, and if adult human SSCs have similar properties, this may have applications in human regenerative medicine. Keywords: Stem/progenitor spermatogonia, Pluripotency, Prostate, Skin, Uterus
Transdiferenciación directa de espermatogonias progenitoras y madre(troncales) a tejidos reproductivos y no reproductivos de todas las capas germinales

Paul S. Cooke
Department of Veterinary Biosciences,University of Illinois, Urbana, Illinois, USA

Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, USA
web: http://vetmed.illinois.edu/faculty/vb/p-cooke.html
e-mail: [email protected]


Volver a la Portada de Logo Paperblog