El pasado viernes, se publicó el segundo desafío a cargo del Profesor Javier Cilleruelo, de la Universidad Autónoma de Madrid, que llevaba por título Un Cuadrado Mágico de Productos (click en la imagen para abrir el video en una nueva ventana/pestaña):
Básicamente hay que rellenar el siguiente cuadrado
de tal forma que el producto de cada fila, de cada columna y de cada diagonal sea siempre el mismo.
Antes de lanzarnos a dar una solución, es muy fácil comprobar que, habiéndonos dado el cuadrado central, el producto de cada fila, columna y diagonal está unvocamente determinado.
En efecto, sea dicho producto. Se cumple, usando la diagonal principal, la línea segunda y la otra diagonal que:
Por lo tanto, si multiplicamos estas expresioens llegamos a que , pero resulta que el primer paréntesis es el producto de la priemra columna y el segundo paréntesis es el producto de la tercera columna, luego ambos paréntesis son iguales a , por lo que se llega a que , o lo que es lo mismo, .
Ahora lo que a mi se me ocurrió (confieso que ese día estaba cansado y no tenía ganas ni de pensar demasiado ni de escribir) planteé, a lo bestia, el sistema de ecuaciones que se obtiene y lo puse en el Mathematica. Éste, lo resolvió en función de dos de los parámetros $$f_{1,1}$$ y $$f_{1,3}$$, así que lo que restaba era estudiar los posibles valores de éstos dos y comprobar si dan o no solución.
Aquí os dejo un PDF con el notebook que creé para esto:
En cualquier caso, en esta ocasión, creo que los dos métodos de solución que se proponen oficialmente son extraordinariamente sencillos y simples de entender y comprender, así que, a continuación, os dejo la Solución al Cuadrado Mágico de Productos (click en la imagen para ir al vídeo)
Disfrutad de la explicación, que de verdad, merece mucho la pena escucharla.
Tito Eliatron Dixit
Si te ha gustado esta entrada, puedes dejar un comentario directamente en Tito Eliatron Dixit.