¿Qué hay que entender en esencia de la fotosíntesis?, diría que cual es el destino de las materias primas. Por ejemplo, todos sabemos desde la infancia que la fotosíntesis produce oxígeno a partir del dióxido de carbono y el agua.
Figura ICR-01. El proceso general de la fotosíntesis, entran el dióxido de carbono, el agua y la luz, saliendo en el proceso carbohidratos y oxígeno.
Una pregunta adecuada es, ¿de dónde viene el oxígeno de respiramos? Una vez damos la respuesta, del agua convertimos a la otra alternativa “dióxido de carbono” en una respuesta de tontos, en un error. Sin embargo históricamente muchos miembros de la comunidad científica asumían precisamente esta alternativa como válida dentro de las presunciones plausibles.Figura ICR-02. Cornelius Bernardus van Niel.
Antes de la propuesta de C. B. van Niel en la década de los 30s del siglo XX, muchos miembros de la comunidad científica pensaban que el proceso de la fotosíntesis se caracterizaba por que el dióxido de carbono era “roto” de forma tal que el carbono se transmitía a la molécula de agua reorganizándola para formar la base de un carbohidrato, mientras que los dos oxígenos liberados se unían para forman el oxígeno molecular diatómico.Figura ICR-03. Representación esquemática de la figura ICR-01. La flecha de reacción posee una caja negra con una interrogante, que representa la complejidad del proceso resumido por la reacción general.
En 1931 van Niel propuso la alternativa que se ha convertido en nuestra explicación estándar para el proceso de la fotosíntesis y el destino de los átomos de las moléculas precursoras de la fotosíntesis. Su trabajo se concentró en las bacterias verdes sulfurosas.Figura ICR-04. Esquema propuesto hipotéticamente por van Niel y corroborada luego por Robert Hill para las bacterias verdes sulfurosas.
Las bacterias verde sulfurosas se caracterizan por realizar fotosíntesis SIN AGUA, en lugar de agua, estas bacterias emplean una molécula análoga al agua llamada ácido sulfhídrico (SO2).Figura ICR-05. Generalización de la ecuación ICR-04 para cualquiera de las dos fotosíntesis, en esta nueva visión el agua es un producto de la reacción siempre, pero como ingrediente puede ser reemplazado por el ácido sulfhídrico.
Los estudios de este tipo de fotosíntesis revelaron que generaba el mismo tipo de carbohidratos que las fotosíntesis con base en agua, sin rastros de azufre en este lugar. ¿En dónde estaba el azufre? la respuesta está en la razón por la cual llaman a estas bacterias “sulfurosas”, ¡produce azufre! en lugar de oxígeno.Figura ICR-06. Representación de la fotosíntesis del tipo II según el esquema de van Niel produciendo una subunidad de carbohidrato.
Con estos datos van Niel propuso una reacción general para las dos fotosíntesis, postulado que en ambos casos agua o azufre, eran ellos la molécula que era “destruida” para reorganizar sus átomos, en ambos casos los hidrógenos serian empleados para “según el equilibrio químico de la reacción” unirse al dióxido de carbono convirtiéndolo en la base del azúcar sintetizado, mientras que el átomo de oxigeno/azufre era liberado y segregado, ya fuera de forma oxígeno molecular gaseoso o como azufre.Figura ICR-07. Reacción general de la fotosíntesis según la propuesta de van Niel para la síntesis de una sola molécula de glucosa.
Esta propuesta realizada principalmente en base al balanceo de una reacción química, “sin asumir criterios biológicos en estas cajas negras llamadas células” fue corroborada en 1941 por Samuel Ruben y Martin Kamen de la universidad de California, Berkeley. Los investigadores emplearon isótopos del oxígeno para sintetizar agua marcada. De esta forma era posible rastrear el destino final del isótopo del oxígeno y así diferenciarlo del oxígeno normal del dióxido de carbono.Si el oxígeno marcado terminaba en los azucares y tejidos de las plantas se refutaría la propuesta de van Niel, pero si el oxígeno marcado terminaba siendo liberado en forma gaseosa, la propuesta de van Niel sería confirmada. Al realizar el experimento, las algas verdes emitieron el oxígeno marcado de forma gaseosa.
La propuesta de van Niel es importante en el sentido de que convierte a la fotosíntesis en el proceso opuesto a la respiración celular.
Sin embargo en los próximos artículos evaluaremos esta “caja negra” que está en medio de los reactivos y los productos, pues la complejidad de la fotosíntesis se pierde mucho cuando se la simplifica a una simple reacción química.
Figura ICR-08. Reacciones de la luz, el esquema es semejante a la cadena de transporte de electrones
El proceso de fotosíntesis se divide en dos etapas de reacciones muy diferentes entre sí, la primer etapa es la de reacciones dependientes de luz, en la cual se realizan muchas de las funciones que desde los cursos de primaria de adjudicamos a este proceso, como la producción de oxígeno dependiente de reacciones basadas en la luz y la clorofila.Figura ICR-09. El ciclo de Calvin Benson o fase oscura de la fotosíntesis.
La segunda fase es el de las reacciones independientes de la luz o también llamadas fase oscura. Este grupo de reacciones en en esencia lo opuesto al ciclo de Krebs aunque un poco mas compleja. PRINCIPAL REGRESAR