No ha habido movimiento más arrollador en toda la historia de la ciencia que el desarrollo de la geometría no euclídea , un movimiento que estremeció hasta sus cimientos la creencia, proveniente de épocas remotas, de que Euclides había expresado verdades eternas.Edward Kasner y James Newman, en Matemáticas e Imaginación
vía Las geometrías no euclídeas, de Mundo Matemático de RBA.
Pues, aunque os parezca mentira, acaba de caer en mis manos este precioso libro de la colección RBA, y una de las primeras cosas que se pueden leer (de hecho, títulos e índices aparte, es lo primero que aparece) es esta cita.
Realmente, si uno se pone a pensar, la Geometría que Euclides plasma en sus famosos Cinco Postulados no es más que, parafraseando a Laplace, sentido común expresado en lenguaje matemático. Sin embargo, el V postulado, el postulado de las paralelas, ha dado muchísimo de sí. Tanto que los matemáticos han sabido dejar atrás intentos e intentos de demostrarlo (o refutarlo) para pasar a crear Geometrías alternativas en las que dicho postulado se ve modificado, pero todo sigue funcionando.
Ciertamente, visto a la luz de la historia, este hecho no nos parece, al menos a los matemáticos, sorprendente, pero debería serlo, pues se trató de un terremoto de la magnitud de la teoría heliocéntrica del propio Galileo. O quizás algo más, ya que éste sólo sacó a la luz la realidad, mientras que las Geometrías No Euclídeas se escapan a de la realidad circundante (al menos, a simple vista).
¿Qué opináis vosotros?
Tito Eliatron Dixit
Si te ha gustado esta entrada, puedes dejar un comentario directamente en Tito Eliatron Dixit.