Revista Ciencia

Piratas del Caribe: Volcando un barco

Publicado el 14 octubre 2014 por Alf
Cartel promocional de la película

Me he retrasado más de lo habitual en retomar el blog, pero aquí estamos de vuelta. Y lo haremos con una de las películas de la saga Piratas del Caribe. Concretamente con la tercera: En el fin del mundo. Ah, pero ¿tiene sentido hablar de mala ciencia en una pelicula con elementos sobrenaturales como seres mitológicos, dioses, maldiciones, muertos que vuelven del otro mundo y cosas así? Pues creo que en este caso concreto, sí, ya que hay una curiosa mezcla de buena y mala ciencia.

Veamos la escena. Los protagonistas tras rescatar a Jack Sparrow de una especie de «más allá», deben volver al mundo de los vivos. A partir de una especie de mapa mágico, Jack deduce que el barco en el que viajan, debe estar boca abajo en la puesta de sol, justo cuando se produce el famoso y esquivo rayo verde. Así que incita a la tripulación a recorrer la cubierta de un lateral a otro, haciendo oscilar el barco cada vez más. Cuando Barbosa se da cuenta de lo que pretende, baja a la cubierta inferior y da órdenes para dejar libre los cañones, balas y barriles de pólvora, para que se desplacen con las oscilaciones del barco. Finalmente, el barco vuelca, y al ponerse el sol (con su destello verde), se invierte todo, y se encuentran boca arriba en el mundo de los vivos.

Piratas del Caribe: Volcando un barco

Bueno, vamos a ver cómo funciona la física de un barco en flotación, a medida que desplazamos la carga. Hace tiempo expliqué nociones básicas de flotabilidad de una embarcación, donde vimos que hay que tener en cuenta dos puntos fundamentales. Uno es el centro de gravedad, que es el punto de aplicación de la fuerza de gravedad que empuja el barco hacia abajo. La ubicación de ese punto depende de la geometría del barco y de su distribución del peso. El otro punto es el centro de flotabilidad, que es el punto de aplicación de la fuerza correspondiente al principio de Arquímedes, que empuja el barco hacia arriba. La ubicación de este segundo punto depende únicamente de la geometría de la parte sumergida (es independiente de la distribución del peso).

En una situación normal de equilibrio, ambos puntos están en la misma vertical (idealmente, en algún punto de la línea central del barco). Las fuerzas son iguales, y de sentido opuesto, por lo que el barco permanece estático, en cuanto a flotabilidad se refiere.

Piratas del Caribe: Volcando un barco

Supongamos ahora que toda la tripulación se dirige al lado de babor (izquierda). Al cambiar la distribución del peso, el centro de gravedad se desplazará algo hacia ese mismo lado (hay más peso en ese lado). Como la geometría de la parte sumergida no ha cambiado, el centro de flotabilidad sigue en el mismo sitio. Tenemos ahora dos fuerzas iguales y opuestas, pero cuyos puntos de aplicación ya no están en la misma vertical. Esto es, un par de fuerzas, y produce una aceleración angular en el barco, que lo hace rotar sobre un eje longitudinal. Traducción: el barco se inclina hacia babor. Como el barco se inclina, la geometría de la parte sumergida cambia, y por tanto, el centro de flotabilidad cambia de posición. En un barco bien diseñado (esto es, que no vuelque a la mínima), al sumergirse más el lado de babor, el centro de flotabilidad se desplaza también hacia este lado, disminuyendo el par de fuerzas, hasta volver a encontrarse en la misma vertical que el centro de gravedad, momento en el que desaparece el par.

Piratas del Caribe: Volcando un barco
Piratas del Caribe: Volcando un barco

El barco no se detiene ahí. Ha adquirido un momento angular, por lo que seguirá inclinándose. Pero al hacerlo, el centro de flotabilidad continua desplazándose hacia babor (el centro de gravedad, sigue en el mismo sitio, ya que la tripulación se ha quedado en el borde), introduciendo nuevamente un par de fuerzas, pero esta vez, que se opone a la rotación adquirida. La velocidad angular disminuirá, hasta que el barco deje de inclinarse. Entonces, ese mismo par, hará que el barco comience a enderezarse. El centro de flotabilidad se desplazará ahora hacia estribor, hasta volver a estar en la misma vertical que el centro de gravedad. Nuevamente, la inercia hará que el barco siga enderezándose un poco, produciendo otra vez un par en sentido contrario. Así, el barco oscilará varias veces alrededor de la nueva posición de equilibrio.

Piratas del Caribe: Volcando un barco

Si cuando el barco ha alcanzado su máxima inclinación, la tripulación corre hacia el lado de estribor, el centro de gravedad se desplazará hacia estribor. Además, al estar el barco inclinado hacia babor, el centro de flotabilidad está desplazado hacia babor. La distancia entre ambos puntos es ahora mayor que antes, por lo que el par de fuerzas será también mayor. Esto hace que el barco no sólo se enderece más rápido, sino que se incline hacia el lado contrario (estribor). Al hacerlo con un par mayor, la aceleración es mayor, por tanto, también el momento angular. Traducción: el barco ha adquirido más inercia que antes, por lo que una vez se invierta el par, tardará un poco más en detenerse y comenzar a enderezarse. Esto implica que el barco se incline con un ángulo algo mayor que antes.

Repitendo la operación varias veces, conseguiremos que el barco se incline de un lado a otro, y que cada vez la inclinación sea mayor. Para toda embarcación, hay un ángulo máximo de estabilidad que, una vez traspasado, el barco vuelca. Esto es porque cuando inclinamos mucho un barco, parte del casco que debería estar sumergido, ya no lo está. La geometría sumergida cambia lo suficiente como para que el centro de flotabilidad se vuelva a acercar hacia el de gravedad, y cambie de lado. Esto es, si el barco se inclina hacia babor, llega un momento en el que en centro de flotabilidad se desplaza hacia estribor. Una vez está más a estribor que el centro de gravedad, el par de fuerzas se invierte, y en vez de enderezar el barco, lo hace volcar, hasta alcanzar una nueva posición de equilibrio, con el barco boca abajo.

Hay un factor que aún no he mencionado: la resistencia del agua. La fuerza de resistencia del agua se opone a todo movimiento, y es mayor cuanto mayor sea la velocidad. Esto pone un límite a la máxima oscilación que podemos obtener de esta manera. No estoy seguro de que el desplazamiento de unas pocas personas sea suficiente como para hacer volcar un barco de ese tamaño, pero no importa ahora.

Lo que sí quiero hacer notar es lo siguiente: en mitad del proceso, se deja suelta la carga de la cubierta inferior (aún por encima de la línea de flotación, ya que es por donde disparan los cañones), de forma que barriles, cañones y balas de cañón se desplacen libremente con cada inclinación. Se supone que eso facilita que con cada oscilación, la inclinación sea cada vez mayor, y en la peli vemos como la carga rueda de un lado a otro. Pero en realidad, esto no ocurriría.

Piratas del Caribe: Volcando un barco

Veamos por qué. Supongamos que la tripulación se desplaza a babor. El barco se inclina, hacia el mismo lado, y la carga se desliza también hacia babor. El centro de gravedad se desplaza a babor mucho más que antes, y el barco se inclina más. «¡Ah! Pero eso es lo que queríamos ¿no?». Sí. Pero ¿qué pasa cuando la tripulación vuelve a estribor? El centro de gravedad se desplaza a estribor, pero no tanto como antes, ya que tenemos la carga en el lado de babor. Es más, si la carga liberada pesa más que la tripulación (algo bastante razonable), el centro de gravedad ni siquiera llegaría a cruzar el centro del barco, y seguirá en el lado de babor, por lo que nunca podríamos volver a enderezar el barco. No digamos ya el inclinarlo hacia el otro lado.

Piratas del Caribe: Volcando un barco
Piratas del Caribe: Volcando un barco

Es posible seguir hacer oscilar el barco, y aumentar la amplitud cada vez más. Pero dado que no podemos volver a inclinar el barco hacia el lado contrario (hacia estribor), la posición del barco oscilaría entre estar muy inclinado a babor, o poco inclinado a babor. Tal vez la mayor inclinación a babor producida por el peso adicional de los cañones, sea suficiente para hacer volcar el barco. Desde ese punto de vista, la escena de la peli tiene algo de buena ciencia. Pero la oscilación no se produciría tal y como nos la muestran, con el barco inclinándose de un lado a otro, y los cañones cambiando de lado en cada iteración, sino que el barco estaría siempre inclinado hacia el mismo lado, variando su ángulo con cada oscilación.

Supongo que alguno pensará «bueno, pero es que no están en el mundo real sino en algún lugar sobrenatural, donde tal vez las leyes de la física sean diferentes». Ya, pero entonces, tampoco serviría de nada el correr por el barco, ya que son esas mismas leyes las que harían que se inclinara.

Como curiosidad, para los interesados en el detalle, hay un análisis muy interesante, con estimaciones de peso dimensiones, resistencia del agua, etc, en la web Academia.edu.

Los diagramas son modificaciones sobre el original de Cmglee bajo CC BY-SA 3.0


Volver a la Portada de Logo Paperblog