Revista Tecnología

Criptografía cuántica, transmisión a 80 km mediante variables continuas

Publicado el 03 mayo 2013 por Barzana @UMUbarzana

Actualidad Informática. Criptografía cuántica, transmisión a 80 km mediante variables continuas. Rafael Barzanallana. UMU

Manejando  los fotones individuales, la criptografía cuántica de variables discretas se pueden utilizar a través de largas distancias, pero su uso es complicado. Con las variables continuas, se hace posible con medios habituales de telecomunicaciones, pero grandes distancias permanecen intransitables. Con 80 kilometros, investigadores franceses han logrado un hito en el progreso de  esta técnica de seguridad de la información en internet.

El fenómeno  del entrelazamiento cuántico se descubrió teóticamente por Einstein y Schrödinger en 1930. Este fenómeno se encuentra en el corazón de la famosa paradoja EPR, cuya existencia se ha comprobado en 1982 por Alain Aspect y sus colegas.

El fenómeno de entrelazamiento cuántico se puede utilizar para transmitir fielmente una clave de cifrado basada en el uso de los números primos, usando lo que se llama el protocolo E91, propuesto en 1991 por Artur Ekert. Pero esta no es la única forma de utilizar las leyes de la mecánica cuántica para distribuir claves en criptografía. El protocolo BB84 propuesto por Charles H. Bennett y Gilles Brassard en 1984, por ejemplo, no utiliza el fenómeno de entrelazamiento.

De hecho, el punto importante es usar la física cuántica para garantizar que la transmisión de una clave (Quantum Key Distribution QKD en Inglés) no fue interceptado por un espía.

Paquetes de ondas en lugar de fotones polarizados

La criptografía cuántica se asegura de este modo, al menos en teoría, la confidencialidad de las transacciones en línea. Es por eso que tratamos de desarrollar diversas maneras de construir una red de comunicación cuántica a largas distancias. La reciente propuesta de un grupo de investigadores de la realización de una prueba del efecto EPR entre la Tierra y la Estación Espacial Internacional es un ejemplo directo de esta esperanza.

Se sabe transmitir una clave en la criptografía cuántica a través de largas distancias, con el uso de variables discretas, tales como la polarización de fotones. Sin embargo, se deben utilizar los fotones uno a uno, y no es práctico. Es mucho más fácil  utilizar variables continuas, tales como la fase y la amplitud dle paquetes de ondas con estados coherentes. A continuación, se pueden utilizar componentes de telecomunicaciones estándares, y son, de alguna manera, las desigualdades de Heisenberg para estas variables continuas las que pueden hacer  la criptografía cuántica.

Técnicas de comunicación cuántica mejoradas

Desafortunadamente, esto requiere el uso de técnicas sofisticadas de corrección de errores (para hacer la señal lo más clara posible), cuyo rendimiento se ha limitado a  25 km para la distribución de claves cuántica con variables continuas (Continuous Variable Clave Cuántica distribución o CVQKD en Inglés).

Estas técnicas se han mejorado recientemente, gracias a una colaboración entre físicos, informáticos e ingenieros del CNRS, Institut d’optique Graduate School, de Télécom ParisTech, de Inria (Institut national de recherche en informatique et en automatique)  y de la start-up Sequrenet.

En un artículo publicado en Nature Photonics,  libremente disponible en arXiv, describen un método CVQKD para una distancia de 80 km. Según el comunicado del CNRS, el éxito abre perspectivas para asegurar enlaces metropolitanas, por ejemplo, en los centros de datos regionales.

Fuente:  Futura-Sciences


Volver a la Portada de Logo Paperblog