Revista Ciencia

Elcerebro y la música (2)

Publicado el 13 septiembre 2021 por Miguel Angel Verde Valadez @arcangel_hjc
Elcerebro y la música (2)Notas y neuronas

Los investigadores de la neurofisiología de la música han empezado a entender estos procesos en los últimos años. Para explorar los vericuetos que sigue la música por el cerebro algunos investigadores llevan a cabo estudios de personas con lesiones cerebrales que afectan alguna de sus capacidades musicales. Localizando la lesión en el cerebro se pueden hacer deducciones acerca de la función que cumple la zona afectada en el reconocimiento de la música. Otros investigadores emplean técnicas para visualizar la actividad cerebral en tiempo real, como la tomografía de emisión de positrones y la resonancia magnética funcional. Estas técnicas permiten observar al cerebro en acción al procesar música.


Así se han dado cuenta de que la música no sólo activa la corteza auditiva, sino también otras regiones del cerebro especializadas en tareas muy diversas: las que controlan los músculos (particularmente en las personas que tocan algún instrumento), los centros del placer que se activan durante la alimentación y el sexo, las regiones asociadas con las emociones y las áreas encargadas de interpretar el lenguaje.
Según Robert Zatorre, neurocientífico del Instituto Neurológico de Montreal, las actividades musicales —escuchar, tocar, componer— ponen a funcionar casi todas nuestras capacidades cognitivas. Muchos neurocientíficos se interesan en la neurofisiología de la música porque ésta puede revelar muchas cosas acerca del funcionamiento general del cerebro.
La música y el lenguaje
El estudio de la percepción del lenguaje ha influenciado y precedido en muchos aspectos al estudio de la percepción mu­sical, seguramente por ser ambos, música y lenguaje, información transmitida por medio de sonidos.
Pero hoy sabemos que el cerebro no procesa igual la música y el lenguaje. Isabelle Peretz, guitarrista y psicóloga de la Universidad de Montreal, y su equipo han realizado estudios del trastorno conocido como amusia, la imposibilidad de reconocer sonidos musicales. Los participantes son incapaces de aprenderse melodías sencillas y de detectar errores en una melodía conocida. Sin embargo, conservan sus habilidades lingüísticas intactas. Por ejemplo, distinguen perfectamente entre la entonación de una afirmación y la de una pregunta. Peretz opina que la amusia se debe a algún trastorno de la corteza auditiva primaria, donde se reconocen las notas y su sonoridad, el primer paso que lleva a cabo el cerebro al analizar la música.
Elcerebro y la música (2)
Por si eso no bastara para distinguir la música del lenguaje, los investigadores han descubierto que éste se procesa preferentemente en la corteza auditiva del hemisferio izquierdo del cerebro, más dado al análisis, mientras la música se procesa más bien (aunque no exclusivamente) en la corteza auditiva derecha. En los músicos la corteza izquierda interviene más que en las personas que no lo son, sin duda porque los músicos escuchan la música de manera más analítica.
Con todo, las analogías entre música y lenguaje siguen guiando investigaciones. En los años 50 el lingüista Noam Chomsky alegó que el cerebro humano ya viene equipado con una especie de programa de gramática, pero no para un lenguaje específico, sino una gramática universal. Así, todas las lenguas del mundo, por distintas que nos parezcan, tendrían una estructura común a cierto nivel. Algunos compositores, lingüistas y musicólogos han extendido las ideas de Chomsky a la música. El lingüista Ray Jackendoff y el compositor Fred Lerdahl propusieron en 1983 una teoría de la gramática universal de la música, según la cual una composición se construye con un número limitado de notas que se combinan según un conjunto de reglas (la gramática musical). Las reglas dan a las notas una estructura dividida en capas de significado musical. Al escuchar la secuencia de notas, el cerebro del oyente reconoce esas capas de la misma manera que en el lenguaje reconoce verbos, sustantivos, adjetivos y todo lo demás.
El etnomusicólogo estadounidense Alan Lomax llegó a una conclusión chomskiana, también en los años 50, luego de analizar las canciones de muchas culturas. Según Lomax, igual que por medio del habla se puede construir un número infinito de frases a partir de un número finito de sonidos, un número infinito de canciones se puede generar a partir de sólo 37 elementos rítmicos, armónicos y melódicos. Más recientemente, en los años 90, Jukka Louhivuori y Petri Toiviainen, de la Universidad de Jyväskyklä, en Finlandia, también influenciados por las ideas de Chomsky, han diseñado modelos generadores de melodías y los han convertido en programas de computadora que “componen” frases musicales. Louhivuori y Toiviainen han probado la eficacia de estos programas como imitadores de los compositores humanos haciendo que muchas personas escuchen y evalúen las melodías.
Elcerebro y la música (2)Sonidos musicales
Para producir sonido hay que poner a vibrar algún objeto. Las cualidades del sonido dependen de las propiedades de las ondas que produce el objeto en el aire al vibrar. La sensación de sonoridad (o volumen) depende de la amplitud o tamaño de la vibración. La sensación de nota (do, re, mi, fa, sol…) es función de la frecuencia: cuántas veces vibra por segundo. Hay otra cualidad menos evidente que se conoce como timbre. El timbre es lo que permite distinguir un piano de una campana, un violín de una flauta, una voz de otra, incluso cuando estos instrumentos emiten la misma nota con la misma sonoridad. ¿De qué características físicas depende el timbre? Una gran variedad de objetos —cuerdas, objetos huecos, membranas tensas, columnas de aire confinadas en tubos— producen al vibrar ondas de muchas frecuencias distintas, pero con una organización particular: una frecuencia más baja, que llamamos fundamental y que da la nota que escuchamos, y luego todos los múltiplos de esa frecuencia: el doble, el triple, el cuádruple y todos los demás. Estas frecuencias superiores se conocen como armónicos. Por lo general la frecuencia fundamental es la más intensa y los armónicos son progresivamente más débiles. ¿Qué tanto? Eso depende del objeto que vibra. El patrón de intensidades relativas de la frecuencia fundamental y sus armónicos es como la huella digital que distingue a un objeto que suena de otro.
El desafío pinkeriano
Septiembre de 2004, Reading, Inglaterra. Reunión de investigadores de la evolución del lenguaje y de la música. En una de las sesiones, el especialista en educación musical Pedro Espi-Sanchis reparte tubos de plástico de distintas longitudes y pone a los investigadores a soplar para producir silbidos, indicándoles que no repitan lo que hacen los demás. Al cabo de unos minutos, los silbidos cacofónicos se convierten espontáneamente en una agradable melodía sin que nadie se lo proponga. Todos bailan mientras tocan las flautas de plástico. El placer de la actividad coordinada genera un ambiente de camaradería que deja a los participantes extasiados.
A muchos de esos participantes la experiencia también los dejó más convencidos de que la música no es pastel de queso auditivo, como propuso Steven Pinker en 1997, sino una adaptación que cumple una función evolutiva. El experimento de Espi-Sanchis favorece la hipótesis de que la música servía para organizar las tareas colectivas y reforzar los lazos afectivos de los grupos.
El debate del origen evolutivo de la música no está zanjado. Muchos investigadores, sin ser de la opinión de Pinker, han aceptado el desafío que ésta implica y siguen buscando la manera de averiguar si la música cumplió una función adaptativa en nuestros antepasados, o si es, en cambio, un efecto secundario, muy afortunado, eso sí. Además de arrojar luz sobre el funcionamiento del cerebro en general, las investigaciones acerca de la neurofisiología de la música seguramente ayudarán a dar respuesta al enigma evolutivo.
Gaby Vargas · la música y su poder

Volver a la Portada de Logo Paperblog