Revista Ciencia

Lagrange y la raíz de 2

Publicado el 21 enero 2013 por Eliatron
Es imposible encontrar un número entero que multiplicado por sí mismo dé 2. Tampoco se puede encontrar una fracción así, pues si simplificas la fracción hasta ser irreducible, el cuadrado de esta fracción será de nuevo irreducible y por lo tanto no puede ser igual al número entero 2.
Joseph Louis Lagrange en Lectures on Elementary Mathematics, On Arithmetic, pág 11.
Visto en Cute the Knot.
Por si alguien aún no se ha enterado, se trata de una muy curiosa demostración de la irracionalidad de [;\sqrt2;] (y, por extensión, de la de la raíz de cualquier número natural que no sea un cuadrado perfecto).
Supongamos que [;n;] no es un cuadrado perfecto y que [;\sqrt n;] es racional, es decir, [;\sqrt n={p}/{q};] con [;p,q\in\mathbb{N};] y primos entre sí (para que la fracción sea irreducible). Lo que afirma Lagrange es que si [;p/q;] es irreducible (con [;q\ne1;]), entonces [;p^2/q^2;] también lo es. En efecto, si tenemos en cuenta la descomposición en factores primos de [;p;] y [;q;], como [;p/q;] es irreducible, entonces no hay factores comunes en [;p;] y [;q;]; al elevar al cuadrado, lo que hacemos es duplicar los exponentes de los factores ya existentes, pero jamás introduciremos factores nuevos, por lo tanto, [;p^2;] y [;q^2;] tampoco compartirán factores y resultarán primos entre sí.
Y claro, si [;p^2/q^2;] es irreducible, por mucho que queramos nunca podrá ser un número entero (recordad que [;q\ne1;], luego, en particular, [;p`^2/q^2\ne n;] lo que lleva a contradicción.
Durante esta semana, si puedo, propondré alguna que otra demostración más de la irracionalidad de [;\sqrt2;].
Tito Eliatron Dixit
PD: Esta entrada participa en la Edición 3.1415926535 del Carnaval de Matemáticas cuyo anfitrión es La Aventura de la Ciencia
 
Si te ha gustado esta entrada, puedes dejar un comentario directamente en Tito Eliatron Dixit.
 

Volver a la Portada de Logo Paperblog