Hoy una entrada sobre algo relativamente sencillo (de 2º de la E.S.O.) pero que su desconocimiento nos puede encadenar a la confusión. Tomemos como ejemplo una noticia de Madrid del 18 de julio de 2013: Las tasas universitarias suben otro 20%, tras el 38% de 2012.
Si ahora preguntásemos por la calle, cuánto ha sido el incremento en estos dos años, habría personas que dirían: "Vamos a ver, 20% de un año y 38% del otro, sumamos y nos da ¡58%!". No es pequeña la subida, pero realmente la cosa es peor; la subida es de 65,6% ¿Por qué? Intentaré explicar la cuenta, que no las razones de la subida que son inexplicables.
Si algo cuesta en 2011 100 € tras la subida de 2012 costaría 138 €, es decir, multiplicamos por 1.38 el precio del año anterior.
P 2012 = P 2011 · 1 + 38 100 = P 2011 · 1.38 P_{2012} = P_{2011}·left (1 + 38 over 100 right) = P_{2011}·1.38
Pero si ahora aplicamos la subida de 2013 (20%) no sería sobre 100 €, sino sobre 138 €, por tanto, el precio final tiene que ser mayor. Aplicamos de nuevo la misma fórmula aplicada antes multiplicando 138 por 1.20 y nos da 165,6 €. Por tanto, hemos tenido una subida de 65,5 € sobre los 100€ iniciales de 2011. En fórmulas
P 2013 = P 2012 · 1 + 20 100 = P 2011 · 1 + 38 100 1 + 20 100 = P 2011 · 1.38 · 1.20 = P 2011 · 1.656
Por esta misma razón, cuando se hace una subida del 20% y posteriormente una rebaja del 20% no se recupera el precio original. Debido al aspecto de la fórmula usada y el procedimiento empleado a estos porcentajes se les llama encadenados, dónde cada subida o bajada porcentual sería un eslabón de la cadena. Cadena, algunas veces nada metafórica.